崔昊杨, 张雨阁, 张驯, 陈磊, 江超, 孙益辉. 基于边端轻量级网络的电力仪表设备检测方法[J]. 电网技术, 2022, 46(3): 1186-1193. DOI: 10.13335/j.1000-3673.pst.2021.0670
引用本文: 崔昊杨, 张雨阁, 张驯, 陈磊, 江超, 孙益辉. 基于边端轻量级网络的电力仪表设备检测方法[J]. 电网技术, 2022, 46(3): 1186-1193. DOI: 10.13335/j.1000-3673.pst.2021.0670
CUI Haoyang, ZHANG Yuge, ZHANG Xun, CHEN Lei, JIANG Chao, SUN Yihui. Detection of Power Instruments Equipment Based on Edge Lightweight Network[J]. Power System Technology, 2022, 46(3): 1186-1193. DOI: 10.13335/j.1000-3673.pst.2021.0670
Citation: CUI Haoyang, ZHANG Yuge, ZHANG Xun, CHEN Lei, JIANG Chao, SUN Yihui. Detection of Power Instruments Equipment Based on Edge Lightweight Network[J]. Power System Technology, 2022, 46(3): 1186-1193. DOI: 10.13335/j.1000-3673.pst.2021.0670

基于边端轻量级网络的电力仪表设备检测方法

Detection of Power Instruments Equipment Based on Edge Lightweight Network

  • 摘要: 电力仪表设备边端智能化检测,是构建数字化变电站的必要环节。在利用移动边端视觉设备检测电力仪表时,边端算力难以实现对复杂环境下的小尺度、高似然目标图像的快速检测,为此,提出一种基于轻量级EF-YOLOv4网络的电力仪表图像目标检测方法。通过改进模型的主干特征网络,利用深度可分离卷积(depthwise separable convolutions,DSC)计算方法提取仪表多属性特征,同时降低模型计算复杂度,提高检测速度;改进特征融合结构,增加具有高分辨率以及颜色、纹理等仪表信息的浅层特征层,提升模型对小尺度仪表目标的注意力;融入最近邻快速特征匹配(fast library for approximate nearest neighbors,FLANN)方法,通过单位符号特征细粒度检测仪表目标。利用迁移学习参数共享机制调整模型权重,使模型快速适应于电力仪表小样本数据集。最后构建电力仪表图像测试集对模型进行验证。实验结果表明,相比于传统目标检测方法,所提方法对于电能表、电压表等多尺度、细粒度仪表设备图像的目标检测保持了较高的精确度与速度。可为电力仪表的可视化、信息化与智能化提供可行的技术方案及借鉴。

     

    Abstract: The intelligent detection of the edge of power instrument equipment is a necessary link in the construction of digital substations. When the power instrument is detected by the mobile visual equipment, it is difficult for the edge computing of the equipment to realize the rapid detection of small scale and high likelihood target images in complex environments. Therefore, a target detection of the power instrument images based on the lightweight EF-YOLOv4 network is proposed in this paper. By improving the backbone feature network of the model, this method uses the deep separable convolution to extract the multi-attribute features of the instruments, reduces the computational complexity of the model and improves the detection speed. By improving the feature fusion structure and adding a shallow feature layer with high resolution, color, texture and other instrument information, the model is improved in its attention to the small-scale instrument targets. The method of fast library for approximate nearest neighbors (FLANN) is integrated to detect the instrument targets through the fine-grained features of the unit symbols. The transfer learning parameter sharing mechanism is used to adjust the weight of the model and the model will quickly adapt to the small sample data set of the power instruments. Finally, the power instrument image test set is constructed to verify the model. The experimental results show that compared with the traditional target detection methods, the proposed method maintains high accuracy and speed for target detection of the multi-scale and fine-grained instrument equipment images such as power meters and voltmeters. It will provide feasible technical solution and reference for the visualization, informatization and intelligentization of the power instruments.

     

/

返回文章
返回