李振坤, 张天翼, 邓莉荣, 符杨, 田书欣, 季亮. 基于模型-数据混合驱动的区域能源互联网韧性在线评估[J]. 电网技术, 2024, 48(10): 4060-4073. DOI: 10.13335/j.1000-3673.pst.2024.0255
引用本文: 李振坤, 张天翼, 邓莉荣, 符杨, 田书欣, 季亮. 基于模型-数据混合驱动的区域能源互联网韧性在线评估[J]. 电网技术, 2024, 48(10): 4060-4073. DOI: 10.13335/j.1000-3673.pst.2024.0255
LI Zhenkun, ZHANG Tianyi, DENG Lirong, FU Yang, TIAN Shuxin, JI Liang. A Hybrid Model-data-driven Online Resilience Assessment Method for the Energy Internet[J]. Power System Technology, 2024, 48(10): 4060-4073. DOI: 10.13335/j.1000-3673.pst.2024.0255
Citation: LI Zhenkun, ZHANG Tianyi, DENG Lirong, FU Yang, TIAN Shuxin, JI Liang. A Hybrid Model-data-driven Online Resilience Assessment Method for the Energy Internet[J]. Power System Technology, 2024, 48(10): 4060-4073. DOI: 10.13335/j.1000-3673.pst.2024.0255

基于模型-数据混合驱动的区域能源互联网韧性在线评估

A Hybrid Model-data-driven Online Resilience Assessment Method for the Energy Internet

  • 摘要: 随着台风灾害的日益频发,能源系统的供能安全面临重大挑战,迅速、准确地根据实时更新的台风预测信息在线评估系统在未来短期内的应灾能力具有重要意义。该文将机理模型与数据驱动相结合,提出了一种模型-数据混合驱动的能源互联网韧性在线评估方法,克服了传统评估模型难以在线应用的缺点。首先,针对极端天气历史数据样本缺乏的问题,利用非序贯蒙特卡洛法离线模拟了系统在不同台风等级下的海量故障场景,以此生成了神经网络的训练样本集;其次,基于时间卷积网络(temporal convolutional network,TCN)构建了能源互联网的韧性在线评估模型,以多能负荷削减率为输出特征,通过离线训练提取台风信息、系统状态与负荷削减率的非线性映射关系,同时,利用深度残差收缩网络(deep residual shrinkage network,DRSN)改进了TCN的残差模块,通过自主的滤波学习降低了训练过程中冗余特征对计算精度的影响;接着,基于构建的韧性在线评估模型,提出了基于扩展交叉熵的韧性指标在线计算方法,通过迭代优化的最优概率密度函数,有效降低了在线仿真场景数量,进一步提高了指标方差收敛速度。最后,对某能源互联网的韧性进行了仿真评估,验证了所提方法的快速性和有效性。

     

    Abstract: With the increasing frequency of typhoon disasters, the energy system's supply security faces significant challenges. Rapid and accurate online assessment of the system's resilience based on real-time updated typhoon forecasts is crucial in the short term. This paper proposes a model-data hybrid-driven resilience online assessment method by combining mechanistic models with data-driven approaches, overcoming the limitations of traditional evaluation models that are difficult to apply online. Firstly, addressing the lack of historical data for extreme weather, the non-sequential Monte Carlo method is used offline to simulate massive fault scenarios under different typhoon levels, generating a training dataset for neural networks. Secondly, an online resilience assessment model for the energy internet is constructed based on the Temporal Convolutional Network (TCN). The mapping relationship between typhoon information, system status, and recovery rate is extracted through offline training. Additionally, a deep residual shrinkage network improves the residual module of TCN, reducing the impact of redundant features through self-filtering during training. Subsequently, an online calculation method for resilience indicators based on extended cross-entropy is proposed, improving the convergence speed of the indicator variance through iteratively optimized probability density functions. Finally, the resilience of an energy internet in a certain region is online simulated and assessed, validating the proposed assessment method's speed and effectiveness.

     

/

返回文章
返回