罗清局, 朱继忠, 朱浩昊, 李盛林, 郭泰亨. 超线性收敛的电-气综合能源系统全分布式优化调度方法[J]. 电网技术, 2025, 49(5): 1816-1825. DOI: 10.13335/j.1000-3673.pst.2024.1864
引用本文: 罗清局, 朱继忠, 朱浩昊, 李盛林, 郭泰亨. 超线性收敛的电-气综合能源系统全分布式优化调度方法[J]. 电网技术, 2025, 49(5): 1816-1825. DOI: 10.13335/j.1000-3673.pst.2024.1864
LUO Qingju, ZHU Jizhong, ZHU Haohao, LI Shenglin, GUO Taiheng. A Fully Distributed Optimal Dispatch Method for Integrated Electricity and Gas Systems With Superlinear Convergence[J]. Power System Technology, 2025, 49(5): 1816-1825. DOI: 10.13335/j.1000-3673.pst.2024.1864
Citation: LUO Qingju, ZHU Jizhong, ZHU Haohao, LI Shenglin, GUO Taiheng. A Fully Distributed Optimal Dispatch Method for Integrated Electricity and Gas Systems With Superlinear Convergence[J]. Power System Technology, 2025, 49(5): 1816-1825. DOI: 10.13335/j.1000-3673.pst.2024.1864

超线性收敛的电-气综合能源系统全分布式优化调度方法

A Fully Distributed Optimal Dispatch Method for Integrated Electricity and Gas Systems With Superlinear Convergence

  • 摘要: 电-气综合能源系统分布式优化调度中通常使用线性收敛的交替方向乘子法。但该方法往往需要多次迭代求解子问题,计算效率并不高。此外,交替方向乘子法通常需要协调中心以更新拉格朗日乘子。对此,该文提出了无需协调中心的全分布式超线性收敛优化调度方法以应对上述两个问题。所提方法基于全分布式内点共轭梯度法,在内点法的基础上对修正方程进行解耦,继承了内点法的超线性收敛性。该文对解耦后的修正方程进行处理,确保系数矩阵对称正定,使其能被共轭梯度法高效求解。采用分布式共轭梯度法对解耦后的修正方程进行全分布式求解,避免引入协调中心。最后,在3个不同规模的系统中验证了全分布式内点共轭梯度法的高效性。

     

    Abstract: The alternating direction method of multipliers with linear convergence is generally used in distributed optimal dispatch of integrated electricity and gas systems. However, this method usually requires many iterations to solve the subproblems and is not computationally efficient. In addition, the alternating direction method of multipliers typically requires a coordination center to update the Lagrange multipliers. To this end, this paper proposes a fully distributed superlinear convergent optimal dispatch method without a coordination center to deal with the above two issues. The proposed method is based on the fully distributed interior point conjugate gradient method, which decouples the correction equations based on the interior point method and inherits the superlinear convergence of the interior point method. In this paper, the decoupled correction equations are processed to ensure that the coefficient matrix is symmetric positive definite so that they can be solved efficiently by the conjugate gradient method. The distributed conjugate gradient method is used to solve the decoupled modified equations in a fully distributed manner to avoid the introduction of a coordination center. Finally, the efficiency of the fully distributed interior point conjugate gradient method is verified in three systems of different sizes.

     

/

返回文章
返回