霍子宇, 鲁宗相, 乔颖, 李佳明, 吴林林. 计及风电出力预测偏差概率分布尾部运行风险的鲁棒机组组合优化[J]. 电网技术, 2025, 49(5): 2014-2023. DOI: 10.13335/j.1000-3673.pst.2024.1589
引用本文: 霍子宇, 鲁宗相, 乔颖, 李佳明, 吴林林. 计及风电出力预测偏差概率分布尾部运行风险的鲁棒机组组合优化[J]. 电网技术, 2025, 49(5): 2014-2023. DOI: 10.13335/j.1000-3673.pst.2024.1589
HUO Ziyu, LU Zongxiang, QIAO Ying, LI Jiaming, WU Linlin. Robust Unit Commitment Optimization Considering the Operational Risk of Wind Power Predict Error Probability Distribution Tail[J]. Power System Technology, 2025, 49(5): 2014-2023. DOI: 10.13335/j.1000-3673.pst.2024.1589
Citation: HUO Ziyu, LU Zongxiang, QIAO Ying, LI Jiaming, WU Linlin. Robust Unit Commitment Optimization Considering the Operational Risk of Wind Power Predict Error Probability Distribution Tail[J]. Power System Technology, 2025, 49(5): 2014-2023. DOI: 10.13335/j.1000-3673.pst.2024.1589

计及风电出力预测偏差概率分布尾部运行风险的鲁棒机组组合优化

Robust Unit Commitment Optimization Considering the Operational Risk of Wind Power Predict Error Probability Distribution Tail

  • 摘要: 随着风电接入比例不断增加,其强随机波动性对传统机组组合方法带来了挑战,使得机组启停频繁、运行方式复杂而多变。特别是风电实际出力与预测值存在较大偏差的“恶劣场景”下,日前确定的UC方案在日内可能无法满足供需平衡而导致系统运行风险骤增。因此,将风电出力预测偏差概率特性纳入机组组合成为一个迫切需要解决的问题。文章提出了一种计及风电出力概率分布尾部运行风险的两阶段鲁棒机组组合模型及其优化方法。首先,通过数值天气预报数据和谱聚类方法,对单风电场预测出力偏差条件概率分布进行精准刻画,构建区域风电出力概率分布,得到出力置信区间。然后,将风电出力预测偏差尾部概率特性纳入机组组合模型中,优化系统风险裕度,以减少系统在“恶劣场景”下的运行风险,提升系统安全性和经济性。最后,以江苏某地区实际数据进行测试,系统切负荷量仅为传统方法的14%乃至更低,系统风险裕度增加30%~50%,验证了模型的有效性和实用性。

     

    Abstract: As the proportion of new energy integration continues to increase, the highly random fluctuations of wind power pose challenges to traditional unit commitment methods, leading to frequent unit start-ups, shutdowns, and complex and variable operating modes. Particularly under "severe scenarios" with a significant deviation between the actual output and the predicted value of wind power, finding a feasible unit commitment scheme may be impossible, drastically increasing the system operation risk. Therefore, incorporating the probabilistic characteristics of wind power forecast error into unit commitment has become an urgent issue. This paper proposes a two-stage robust unit commitment model and its optimization method that accounts for the operational risk associated with the tail of the wind power output probability distribution. Firstly, through numerical weather prediction data and spectral clustering methods, the conditional probability distribution of the forecast error of a single wind farm's output is accurately characterized, and the regional wind power output probability distribution to obtain the output confidence interval is constructed. Then, the tail probabilistic characteristics of wind power forecast error are integrated into the unit commitment model to optimize system risk margins, thereby reducing operational risk under "severe scenarios" and enhancing system safety and economic efficiency. Finally, tests with actual data from a certain region In Jiangsu, the system load shedding is only 14% or even lower than that of traditional methods, and the system risk margin increases by 30% to 50%, verifying the effectiveness and practicality of the model.

     

/

返回文章
返回