蒲天骄, 赵琦, 王新迎. 电力人工智能技术研究框架、应用现状及展望[J]. 电网技术, 2025, 49(5): 1751-1770. DOI: 10.13335/j.1000-3673.pst.2024.1350
引用本文: 蒲天骄, 赵琦, 王新迎. 电力人工智能技术研究框架、应用现状及展望[J]. 电网技术, 2025, 49(5): 1751-1770. DOI: 10.13335/j.1000-3673.pst.2024.1350
PU Tianjiao, ZHAO Qi, WANG Xinying. Technology Framework, Application Status and Prospects on Electric Power Artificial Intelligence[J]. Power System Technology, 2025, 49(5): 1751-1770. DOI: 10.13335/j.1000-3673.pst.2024.1350
Citation: PU Tianjiao, ZHAO Qi, WANG Xinying. Technology Framework, Application Status and Prospects on Electric Power Artificial Intelligence[J]. Power System Technology, 2025, 49(5): 1751-1770. DOI: 10.13335/j.1000-3673.pst.2024.1350

电力人工智能技术研究框架、应用现状及展望

Technology Framework, Application Status and Prospects on Electric Power Artificial Intelligence

  • 摘要: 能源革命与数字革命深度融合是促进能源电力领域绿色低碳转型升级,加速“双碳”目标实现的重要途径。伴随着生成式大模型的突破,人工智能技术已经从传统的感知判别式向生成决策式升级,为新型电力系统建设在电力运检、调度决策、智慧客服等业务领域所面临的认知推理可靠性弱、调度决策可解释性差、场景变化适应性弱等难题提供更加智能化和创新性的解决方案。该文以电力人工智能为核心,系统性地提出了包含基础技术、数据智能、感知智能、认知智能、决策智能五大方向的电力人工智能技术图谱,详细阐述了各技术方向的应用现状和成熟度,并总结了电力人工智能技术总体现状;同时,立足人工智能技术本身在可解释性、安全性、算力支撑等方面面临的发展挑战,聚焦电力业务,深入分析了电力人工智能技术应用存在的困难和挑战;针对上述挑战,提出了亟待攻关的核心技术方向,展望了这些技术突破在新型电力系统建设中的应用前景。该文旨在推动人工智能技术与能源电力业务的深度融合,助力新型电力系统建设。

     

    Abstract: Integrating energy and digital revolutions is pivotal for green, low-carbon transformations and achieving "dual-carbon" goals. With breakthroughs in generative large-scale models, artificial intelligence (AI) has evolved from traditional perceptual discrimination to generative decision-making. This enhances solutions for cognitive reliability, interpretability of scheduling decisions, and scenario adaptability in power system construction. Focused on electric power artificial intelligence (EPAI), this paper proposes a roadmap comprising basic technology, data intelligence, perceptual, cognitive, and decision-making intelligence. It details each direction's application status, technological maturity, and current EPAI status. It analyzes EPAI application difficulties in the power sector by addressing challenges like interpretability and security. Proposing core technological directions, it anticipates their application effectiveness in new power system construction, aiming to empower AI technology in energy and power businesses.

     

/

返回文章
返回