牛奎烨, 刘金波, 汤奕, 韩昳, 胡健雄, 刘幸蔚, 宋旭日. 计及极端气象事件的年度系统运行场景生成方法[J]. 电网技术, 2024, 48(10): 3992-4001. DOI: 10.13335/j.1000-3673.pst.2024.1239
引用本文: 牛奎烨, 刘金波, 汤奕, 韩昳, 胡健雄, 刘幸蔚, 宋旭日. 计及极端气象事件的年度系统运行场景生成方法[J]. 电网技术, 2024, 48(10): 3992-4001. DOI: 10.13335/j.1000-3673.pst.2024.1239
NIU Kuiye, LIU Jinbo, TANG Yi, HAN Yi, HU Jianxiong, LIU Xingwei, SONG Xuri. A Method for Generating Annual System Operating Scenarios Considering Extreme Meteorological Events[J]. Power System Technology, 2024, 48(10): 3992-4001. DOI: 10.13335/j.1000-3673.pst.2024.1239
Citation: NIU Kuiye, LIU Jinbo, TANG Yi, HAN Yi, HU Jianxiong, LIU Xingwei, SONG Xuri. A Method for Generating Annual System Operating Scenarios Considering Extreme Meteorological Events[J]. Power System Technology, 2024, 48(10): 3992-4001. DOI: 10.13335/j.1000-3673.pst.2024.1239

计及极端气象事件的年度系统运行场景生成方法

A Method for Generating Annual System Operating Scenarios Considering Extreme Meteorological Events

  • 摘要: 随着以风电和光伏为代表的新能源渗透率的快速增长,新型电力系统与气象系统间的耦合程度不断加深,系统运行场景分析与生成面临严峻挑战。极端气象事件的频发导致新能源波动加剧,系统运行场景不确定性激增,而现有方法对气象事件与新能源出力间关系的考虑不足,难以准确刻画极端气象事件影响下的新能源出力特性。为此,提出了一种计及极端气象的长时间尺度系统运行场景生成方法。该方法根据极端气象事件时空分布特性对气象因素进行建模,基于插入多个短时间尺度气象事件的年时间序列,通过高斯过程回归(Gaussian process regression,GPR)模型与Copula函数、数据-知识联合驱动方法结合拟合生成完整的年气象场景,然后将气象场景映射到新能源出力场景,最后通过求解机组组合问题得到系统运行场景。使用SG-126节点算例系统对所提方法进行验证,结果表明该方法能够有效考虑极端气象事件给系统运行带来的影响。

     

    Abstract: With the rapid growth of the penetration rate of new energy represented by wind and photovoltaic power, the coupling degree between new power systems and meteorological systems continues to deepen, and the analysis and generation of system operation scenarios face severe challenges. The frequent occurrence of extreme weather events has intensified fluctuations in new energy, and the uncertainty of system operation scenarios has increased sharply. However, existing methods need more consideration of the relationship between weather events and new energy output, making it difficult to accurately characterize the new energy output characteristics under the influence of extreme weather events. Therefore, this article proposes a method for generating long-term operational scenarios of systems considering extreme weather conditions. This method models meteorological factors based on the spatiotemporal distribution characteristics of extreme meteorological events. Inserting multiple short-term meteorological events into an annual time series generates a complete annual meteorological scenario through the Gaussian Process Regression (GPR) model, Copula function, and data-knowledge joint driving method. The meteorological scenario is then mapped to the new energy output scenario, and the system operation scenario is obtained by solving the unit combination problem. The proposed method was validated using the SG-126 node system, and the results showed that the method can effectively consider the impact of extreme weather events on system operation.

     

/

返回文章
返回