高晨元, 田建艳, 姬政雄, 杨立志. 基于门控循环单元残差连接网络与多任务学习的园区综合能源系统多元负荷预测[J]. 电网技术, 2025, 49(5): 1771-1780. DOI: 10.13335/j.1000-3673.pst.2024.1153
引用本文: 高晨元, 田建艳, 姬政雄, 杨立志. 基于门控循环单元残差连接网络与多任务学习的园区综合能源系统多元负荷预测[J]. 电网技术, 2025, 49(5): 1771-1780. DOI: 10.13335/j.1000-3673.pst.2024.1153
GAO Chenyuan, TIAN Jianyan, JI Zhengxiong, YANG Lizhi. Multivariate Load Forecasting for Park-level Integrated Energy System Based on Gated Recurrent Unit Residual Connection Network and Multi-task Learning[J]. Power System Technology, 2025, 49(5): 1771-1780. DOI: 10.13335/j.1000-3673.pst.2024.1153
Citation: GAO Chenyuan, TIAN Jianyan, JI Zhengxiong, YANG Lizhi. Multivariate Load Forecasting for Park-level Integrated Energy System Based on Gated Recurrent Unit Residual Connection Network and Multi-task Learning[J]. Power System Technology, 2025, 49(5): 1771-1780. DOI: 10.13335/j.1000-3673.pst.2024.1153

基于门控循环单元残差连接网络与多任务学习的园区综合能源系统多元负荷预测

Multivariate Load Forecasting for Park-level Integrated Energy System Based on Gated Recurrent Unit Residual Connection Network and Multi-task Learning

  • 摘要: 准确的多元负荷预测对于能源系统的安全稳定运行以及优化控制和调度至关重要。针对园区综合能源系统随机性强、不确定性大、多种能源耦合等特点,该文提出一种基于门控循环单元(gated recurrent unit,GRU)、残差连接网络与多任务学习(multi-task learning,MTL)结合的园区综合能源系统多元负荷预测模型。首先,构建综合相关性分析方法,以分析不同负荷之间、不同负荷与气象因素之间的关联性,进而优选多元负荷的影响因素;其次,通过GRU网络挖掘多元负荷数据的时序特征,特别地,通过残差连接(residual connection,RC)优化深度网络的性能;然后,采用多任务学习硬共享机制提取多元负荷间的耦合信息;最后,采用多任务损失函数优化平衡多任务训练,提升预测模型的整体性能。算例分析表明,该文所提基于损失函数优化的GRU-RC-MTL模型相较于其他模型具有更为优越的预测性能,验证了该文模型的有效性,可为园区综合能源系统优化调度与能源管控提供更精确的多元负荷预测信息。

     

    Abstract: Accurate multivariate load forecasting is crucial for energy systems' safe and stable operation and for optimizing control and scheduling processes. Aiming at the park-level integrated energy system (PIES) characteristics, such as solid stochasticity, large uncertainty, and multiple energy sources coupling. This paper proposes a multivariate load forecasting model for the PIES based on the combination of gated recurrent unit (GRU), residual connectivity network, and multi-task learning (MTL). Firstly, a comprehensive correlation analysis method is constructed to analyze the correlation between different loads and between different loads and meteorological factors, thereby prioritizing the influencing factors. Secondly, the GRU network mines the temporal characteristics of multiple load data. In particular, the performance of the deep network is improved by residual connection (RC). Then, a hard parameter-sharing mechanism is adopted in MTL to extract the coupling information between multivariate loads. Finally, multi-task loss function optimization is used to balance multi-task training and enhance the overall performance of the prediction model. The case study analysis demonstrates that the GRU-RC-MTL model optimized by the proposed loss function shows superior predictive performance compared with other models. This validates the model's effectiveness and provides more precise multivariate load forecasting information for optimal dispatch and energy management in PIES.

     

/

返回文章
返回