黄冬梅, 杨旭, 胡安铎, 卞正兰, 孙园, 孙锦中. 基于CNN-BiGRU-XGBoost的新型电力系统虚假数据注入攻击检测[J]. 电网技术, 2025, 49(5): 2119-2127. DOI: 10.13335/j.1000-3673.pst.2024.1143
引用本文: 黄冬梅, 杨旭, 胡安铎, 卞正兰, 孙园, 孙锦中. 基于CNN-BiGRU-XGBoost的新型电力系统虚假数据注入攻击检测[J]. 电网技术, 2025, 49(5): 2119-2127. DOI: 10.13335/j.1000-3673.pst.2024.1143
HUANG Dongmei, YANG Xu, HU Anduo, BIAN Zhenglan, SUN Yuan, SUN Jinzhong. Detection of False Data Injection Attack in New Power System Based on CNN-BiGRU-XGBoost[J]. Power System Technology, 2025, 49(5): 2119-2127. DOI: 10.13335/j.1000-3673.pst.2024.1143
Citation: HUANG Dongmei, YANG Xu, HU Anduo, BIAN Zhenglan, SUN Yuan, SUN Jinzhong. Detection of False Data Injection Attack in New Power System Based on CNN-BiGRU-XGBoost[J]. Power System Technology, 2025, 49(5): 2119-2127. DOI: 10.13335/j.1000-3673.pst.2024.1143

基于CNN-BiGRU-XGBoost的新型电力系统虚假数据注入攻击检测

Detection of False Data Injection Attack in New Power System Based on CNN-BiGRU-XGBoost

  • 摘要: 虚假数据注入攻击(false data injection attack,FDIA)通过篡改电网量测信息,威胁电力系统安全。针对新型电力系统FDIA,研究了攻击原理,提出了基于CNN-BiGRU-XGBoost的检测方法。该方法使用卷积神经网络(convolutional neural networks,CNN)与双向门控循环单元(bidirectional gated recurrent unit,BiGRU)提取时空特征,利用极限梯度提升树(eXtreme gradient boosting,XGBoost)进行分类,并引入多头注意力(multi-head attention)与Optuna方法优化模型性能。在IEEE-14节点与39节点系统中进行仿真实验,结果表明该文方法拥有比常见方法更好的精度与平衡性,验证了所提方法的有效性与鲁棒性。

     

    Abstract: False Data Injection Attack (FDIA) threatens the security of power systems by tampering with grid measurement information. For the new power system FDIA, the principle of the attack is studied and a detection method based on CNN-BiGRU-XGBoost is proposed. The method uses Convolutional Neural Networks (CNN) and Bidirectional Gated Recurrent Unit (BiGRU) to extract spatio-temporal features, utilizes eXtreme Gradient Boosting (XGBoost) for classification, and introduces Multi-Head Attention and Optuna methods to optimize the model performance. Simulation experiments are conducted in IEEE-14 node and 39 node systems, and the results show that the method in this paper possesses better accuracy and balance than common methods, which verifies the effectiveness and robustness of the method.

     

/

返回文章
返回