李志煌, 邵振国, 朱少林, 陈飞雄, 张承圣. 基于主从博弈推演和改进多任务学习的居民用户需求响应潜力评估[J]. 电网技术, 2025, 49(5): 1781-1791. DOI: 10.13335/j.1000-3673.pst.2024.0720
引用本文: 李志煌, 邵振国, 朱少林, 陈飞雄, 张承圣. 基于主从博弈推演和改进多任务学习的居民用户需求响应潜力评估[J]. 电网技术, 2025, 49(5): 1781-1791. DOI: 10.13335/j.1000-3673.pst.2024.0720
LI Zhihuang, SHAO Zhenguo, ZHU Shaolin, CHEN Feixiong, ZHANG Chengsheng. Assessing the Potential of Residential User Demand Response Based on Stackelberg Game Theory and Improvements in Multi-task Learning[J]. Power System Technology, 2025, 49(5): 1781-1791. DOI: 10.13335/j.1000-3673.pst.2024.0720
Citation: LI Zhihuang, SHAO Zhenguo, ZHU Shaolin, CHEN Feixiong, ZHANG Chengsheng. Assessing the Potential of Residential User Demand Response Based on Stackelberg Game Theory and Improvements in Multi-task Learning[J]. Power System Technology, 2025, 49(5): 1781-1791. DOI: 10.13335/j.1000-3673.pst.2024.0720

基于主从博弈推演和改进多任务学习的居民用户需求响应潜力评估

Assessing the Potential of Residential User Demand Response Based on Stackelberg Game Theory and Improvements in Multi-task Learning

  • 摘要: 针对居民用户内部隐私信息难以观测、历史需求响应信息缺乏而导致的需求响应潜力评估难题,提出一种基于主从博弈推演和改进多任务学习的居民用户需求响应潜力评估方法。首先,对于信息不完备下的居民用户需求响应行为建模问题,建立售电公司与居民用户家庭能源管理系统间的主从博弈推演模型,根据虚拟博弈均衡下的电价-电量信息挖掘居民用户的电力需求价格弹性系数,并提取需求响应特性参数。其次,通过多任务学习模型建立用电特征与需求响应特性参数之间的映射关系,采用梯度归一化算法解决子任务梯度大小不一致和收敛速度不匹配的问题,实现居民用户群体需求响应特性的泛化建模,进而评估居民用户群体的需求响应潜力。最后,采用北爱尔兰居民用户数据验证了所提方法在需求响应特性挖掘及需求响应潜力评估中的优越性。

     

    Abstract: In response to the challenges of assessing the potential for demand response due to the difficulty in observing residential users' internal private information and the lack of historical demand response data, a method for assessing the potential of residential user demand response based on Stackelberg game theory derivation and improved multi-task learning is proposed. First, a Stackelberg game theory derivation model is established between the electricity retail company and the residential user's home energy management systems to address the modeling issues of residential user demand response behavior under incomplete information. This model uses the equilibrium of virtual games to mine the electricity demand price elasticity coefficients from price-volume information and extracts demand response characteristic parameters. Secondly, a multi-task learning model establishes a mapping relationship between electricity usage characteristics and demand response characteristic parameters. A gradient normalization algorithm is employed to address the issues of inconsistent gradient magnitudes and mismatched convergence speeds among subtasks. This facilitates the generalized modeling of demand response characteristics for the residential user group, thereby enabling the assessment of the demand response potential of this group. Finally, the proposed method is validated using residential user data from Northern Ireland, demonstrating its superiority in mining demand response characteristics and assessing demand response potential.

     

/

返回文章
返回