冉启武, 石卓见, 刘阳, 黄杰, 张宇航. 考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测[J]. 电网技术, 2025, 49(3): 1098-1108. DOI: 10.13335/j.1000-3673.pst.2024.0352
引用本文: 冉启武, 石卓见, 刘阳, 黄杰, 张宇航. 考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测[J]. 电网技术, 2025, 49(3): 1098-1108. DOI: 10.13335/j.1000-3673.pst.2024.0352
RAN Qiwu, SHI Zhuojian, LIU Yang, HUANG Jie, ZHANG Yuhang. Stacking Ensemble for Multi-energy Load Forecasting in Integrated Energy Systems With Consideration of Optimized Modal Decomposition Based on Composite Indices[J]. Power System Technology, 2025, 49(3): 1098-1108. DOI: 10.13335/j.1000-3673.pst.2024.0352
Citation: RAN Qiwu, SHI Zhuojian, LIU Yang, HUANG Jie, ZHANG Yuhang. Stacking Ensemble for Multi-energy Load Forecasting in Integrated Energy Systems With Consideration of Optimized Modal Decomposition Based on Composite Indices[J]. Power System Technology, 2025, 49(3): 1098-1108. DOI: 10.13335/j.1000-3673.pst.2024.0352

考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测

Stacking Ensemble for Multi-energy Load Forecasting in Integrated Energy Systems With Consideration of Optimized Modal Decomposition Based on Composite Indices

  • 摘要: 为提高综合能源系统多元负荷分解水平及预测模型的整体性能,提出考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测方法。首先以排列熵结合互信息为适应度函数,利用金豺优化算法自适应获取变分模态分解的最优参数组合,进而将多元负荷序列分解为本征模态函数集合;其次,通过基于反向传播(back propagation,BP)神经网络扰动的平均影响值(mean impact value,MIV)算法对与多元负荷相关的气象、日期及负荷因素进行特征筛选,从而为多元负荷构建高耦合度的特征矩阵;充分考虑到各单一模型的差异性及优势性,在采用k折交叉验证法减少过拟合的基础上,构建Stacking集成学习模型对多元负荷进行预测;最后采用美国亚利桑那州立大学坦佩校区多元负荷数据集进行实例验证,结果显示所提方法在电、冷、热负荷预测中的平均绝对百分比误差分别达到了0.903%、2.713%和1.616%,预测精度相比其他预测模型具有较大提升。

     

    Abstract: To improve the decomposition level of multiple loads in integrated energy systems and the overall performance of prediction models, a method for predicting multiple loads in integrated energy systems is proposed, considering composite index optimization modal decomposition and Stacking integration. Firstly, permutation entropy combined with mutual information is used as the fitness function, and the Golden Jackal Optimization algorithm is used to obtain the optimal parameter combination for variational modal decomposition adaptively. Then, the multiple load sequences are decomposed into a collection of intrinsic mode functions. Secondly, the Mean Impact Value (MIV) algorithm based on BP neural network perturbation is used to screen features related to meteorological, date, and load factors associated with multiple loads, thereby constructing a highly coupled feature matrix for multiple loads. Considering each single model's differences and advantages, a stacking ensemble learning model is constructed to predict multiple loads by reducing overfitting using the k-fold cross-validation method. Finally, the proposed method is validated using a multiple-load dataset from the Tempe campus of Arizona State University in the United States. The results show that the mean absolute percentage errors of the proposed method in predicting electrical, cooling, and heating loads are 0.903%, 2.713%, and 1.616%, respectively. The prediction accuracy is considerably improved compared to other prediction models.

     

/

返回文章
返回