赵如意, 王晓辉, 郑碧煌, 李道兴, 高毅, 郭鹏天. 基于特征优化和混合改进灰狼算法优化BiLSTM网络的短期光伏功率预测[J]. 电网技术, 2025, 49(1): 209-222. DOI: 10.13335/j.1000-3673.pst.2024.0281
引用本文: 赵如意, 王晓辉, 郑碧煌, 李道兴, 高毅, 郭鹏天. 基于特征优化和混合改进灰狼算法优化BiLSTM网络的短期光伏功率预测[J]. 电网技术, 2025, 49(1): 209-222. DOI: 10.13335/j.1000-3673.pst.2024.0281
ZHAO Ruyi, WANG Xiaohui, ZHENG Bihuang, LI Daoxing, GAO Yi, GUO Pengtian. Short-term Photovoltaic Power Prediction Based on Feature Optimization and Hybrid Improved Grey Wolf Algorithm-optimized BiLSTM Network[J]. Power System Technology, 2025, 49(1): 209-222. DOI: 10.13335/j.1000-3673.pst.2024.0281
Citation: ZHAO Ruyi, WANG Xiaohui, ZHENG Bihuang, LI Daoxing, GAO Yi, GUO Pengtian. Short-term Photovoltaic Power Prediction Based on Feature Optimization and Hybrid Improved Grey Wolf Algorithm-optimized BiLSTM Network[J]. Power System Technology, 2025, 49(1): 209-222. DOI: 10.13335/j.1000-3673.pst.2024.0281

基于特征优化和混合改进灰狼算法优化BiLSTM网络的短期光伏功率预测

Short-term Photovoltaic Power Prediction Based on Feature Optimization and Hybrid Improved Grey Wolf Algorithm-optimized BiLSTM Network

  • 摘要: 为解决光伏序列的强噪音干扰以及单一模型在光伏功率预测方面精度偏低和泛化性较差的问题,提出了一种基于特征优化和混合改进灰狼算法优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的短期光伏功率预测方法。首先,运用互信息算法进行输入数据的变量选择,以消除冗余变量。其次,通过互补集合经验模态分解和改进的小波阈值算法对筛选后的数据进行特征重构,旨在降低数据中的噪声干扰并完成输入变量的特征优化。随后,结合改进的Tent混沌映射、非线性递减因子、动态权重策略和差分进化算法对标准灰狼优化算法进行混合优化,以确定双向长短期记忆神经网络的最优超参数组合,并引入注意力机制以挖掘数据中的关键时序信息,最终构建出一种新型的短期光伏功率预测模型。仿真实验表明,相较于最小二乘支持向量机、长短期记忆网络和双向长短期记忆网络,所提模型在晴天、多云、阴天和降雨等不同工况下的均方根误差平均分别降低了12.45%、7.95%和5.37%,显示出优秀的预测性能、良好的泛化能力和潜在的工程应用价值。

     

    Abstract: To address the challenges posed by strong noise interference in photovoltaic (PV) sequences and the issues of low accuracy and poor generalization of a single model in PV power prediction, we propose a short-term PV power prediction method. This method uses feature optimization and a hybrid improved Grey Wolf algorithm to optimize the BiLSTM network. Firstly, the mutual information algorithm is employed for variable selection in input data to eliminate redundant variables. Subsequently, the Complementary Ensemble Empirical Mode Decomposition and an improved wavelet threshold algorithm are applied to the selected data for feature reconstruction to reduce noise interference in the data and optimize input variable features. Finally, the standard Grey Wolf Optimizer algorithm underwent hybrid optimization by integrating improved Tent chaotic mapping, nonlinear decreasing factors, dynamic weight strategies, and the differential evolution algorithm. This process aimed to ascertain the optimal hyperparameter combination for the BiLSTM network. The attention mechanism was also employed to extract key temporal information from the data, developing a novel short-term photovoltaic power prediction model. Simulation experiments demonstrate that, compared to the least squares support vector machine, long short-term memory network, and bidirectional long short-term memory neural network, the proposed model achieves an average reduction of 12.45%, 7.95%, and 5.37% in root mean square error under various weather conditions such as sunny, cloudy, overcast, and rainy, showcasing excellent predictive performance, good generalization ability, and promising engineering application value.

     

/

返回文章
返回