程杉, 冉涛, 喻磊, 原吕泽芮, 傅桐, 徐其平, 王海东. 考虑配电网全过程韧性提升的多类型韧性资源分布鲁棒机会约束规划[J]. 电网技术, 2025, 49(1): 157-166. DOI: 10.13335/j.1000-3673.pst.2024.0256
引用本文: 程杉, 冉涛, 喻磊, 原吕泽芮, 傅桐, 徐其平, 王海东. 考虑配电网全过程韧性提升的多类型韧性资源分布鲁棒机会约束规划[J]. 电网技术, 2025, 49(1): 157-166. DOI: 10.13335/j.1000-3673.pst.2024.0256
CHENG Shan, RAN Tao, YU Lei, YUAN Lyuzerui, FU Tong, XU Qiping, WANG Haidong. Distributionally Robust Joint Chance Constraint Planning for Multi-type Resilience Resources Considering Full Process Resilience Enhancement in Distribution Network[J]. Power System Technology, 2025, 49(1): 157-166. DOI: 10.13335/j.1000-3673.pst.2024.0256
Citation: CHENG Shan, RAN Tao, YU Lei, YUAN Lyuzerui, FU Tong, XU Qiping, WANG Haidong. Distributionally Robust Joint Chance Constraint Planning for Multi-type Resilience Resources Considering Full Process Resilience Enhancement in Distribution Network[J]. Power System Technology, 2025, 49(1): 157-166. DOI: 10.13335/j.1000-3673.pst.2024.0256

考虑配电网全过程韧性提升的多类型韧性资源分布鲁棒机会约束规划

Distributionally Robust Joint Chance Constraint Planning for Multi-type Resilience Resources Considering Full Process Resilience Enhancement in Distribution Network

  • 摘要: 针对现有配电网韧性提升策略研究侧重于某一阶段、考虑韧性资源单一、刻画线路故障不确定性不全面等问题,提出了考虑配电网全过程韧性提升的多类型韧性资源分布鲁棒机会约束规划方法。首先,构建了基于Wasserstein距离的风场强度与线路故障概率、风机出力阈值之间强耦合下的不确定性模糊集。其次,建立了基于极端灾害时序特性的“预防-应急-抢修”双层三阶段配电网分布鲁棒机会约束规划模型对多类型韧性资源进行联合部署、调度。然后,进一步对模型进行线性化处理,并基于条件风险价值理论(conditional value-at-risk,CVaR)和强对偶理论将所提分布鲁棒模型转化为混合整数二阶锥规划问题。最后,基于算例数字仿真验证了所提方法能够保障强不确定环境下配电网的韧性和供电可靠性。

     

    Abstract: To address limitations in current distribution network resilience enhancement strategies, such as focusing on a single phase, using limited resilience resources, and insufficiently capturing the uncertainties of line failures, a distributionally robust joint chance constraint planning for multi-type resilient resources considering full process resilience enhancement in the distribution network is proposed in this paper. First, a fuzzy uncertainty set is established using the Wasserstein distance to model the strong coupling between wind field intensity, line failure probability, and wind turbine output thresholds. Subsequently, a bi-level three-stage planning model based on the "prevention-response-restoration" framework is developed for the joint deployment and scheduling of various resilience resources, capturing the unique temporal characteristics of extreme disasters. The model is then linearized and converted into a mixed-integer second-order cone programming problem by leveraging Conditional Value-at-Risk and strong duality theory. Finally, numerical simulations verify that the proposed approach enhances resilience and supply reliability of the distribution network under conditions of high uncertainty.

     

/

返回文章
返回