毛建斌, 杨少兵, 杨湘彦, 石任尔, 聂晓波. 基于有限混合模型的规模化电动汽车充电负荷在线预测方法[J]. 电网技术, 2025, 49(5): 1931-1940. DOI: 10.13335/j.1000-3673.pst.2024.0241
引用本文: 毛建斌, 杨少兵, 杨湘彦, 石任尔, 聂晓波. 基于有限混合模型的规模化电动汽车充电负荷在线预测方法[J]. 电网技术, 2025, 49(5): 1931-1940. DOI: 10.13335/j.1000-3673.pst.2024.0241
MAO Jianbin, YANG Shaobing, YANG Xiangyan, SHI Rener, NIE Xiaobo. Charging Load Online Forecasting Method Based on Finite Mixture Model for Large-scale Electric Vehicles[J]. Power System Technology, 2025, 49(5): 1931-1940. DOI: 10.13335/j.1000-3673.pst.2024.0241
Citation: MAO Jianbin, YANG Shaobing, YANG Xiangyan, SHI Rener, NIE Xiaobo. Charging Load Online Forecasting Method Based on Finite Mixture Model for Large-scale Electric Vehicles[J]. Power System Technology, 2025, 49(5): 1931-1940. DOI: 10.13335/j.1000-3673.pst.2024.0241

基于有限混合模型的规模化电动汽车充电负荷在线预测方法

Charging Load Online Forecasting Method Based on Finite Mixture Model for Large-scale Electric Vehicles

  • 摘要: 在“双碳”目标下,规模化电动汽车接入将对配电网产生较大影响,准确预测电动汽车充电负荷是调控的基础。针对目前充电负荷预测方法中充电行为描述较为主观、精度较差,且缺乏对实时测量数据的利用等问题,提出了一种基于有限混合模型(finite mixture model,FMM)的规模化电动汽车充电负荷在线预测方法,FMM是将有限多个随机分布加权混合的统计学方法。该文从影响充电负荷的关键随机分布出发,提出使用FMM描述车辆起始充电时间随机分布,建立了规模化电动汽车充电负荷概率模型。在此基础上,提出了基于实测数据驱动的电动汽车负荷在线预测方法,该方法采用两阶段式算法对不同类型日的负荷模型参数进行辨识,并以时间驱动的方式在线更新负荷模型参数进而实现电动汽车充电负荷预测。最后,以某充电运营商的实测充电数据为例,持续辨识了运营区域内的充电负荷模型参数,并基于所辨识模型预测了该区域电动汽车充电负荷,通过分析模型参数辨识效果和充电负荷预测结果,验证了所提预测方法的有效性和可行性。

     

    Abstract: Under the goal of carbon peaking and carbon neutrality, the development of large-scale electric vehicles will have a great impact on the distribution power system. Accurate prediction of electric vehicle charging load is the basis of regulation. Aiming at problems such as the subjective description of charging behavior and the lack of utilization of real-time measurement data in current load forecasting methods, a charging load online forecasting method based on finite mixture model (FMM) for large-scale electric vehicles is proposed, where FMM is a statistical method that weights and mixes a limited number of random distributions. Starting from the key random distribution that affects charging load, this paper proposes to use FMM to describe the random distribution of electric vehicle initial charging time, establishes a charging load probability model for large-scale electric vehicles. On this basis, a charging load online prediction method driven by measured data is proposed. This method uses a two-stage algorithm to identify load model parameters for different types of days, and updates the load model parameters online in a time-driven manner to achieve charging load forecasting. Finally, taking the measured charging data of a certain charging operator as an example, the charging load model parameters in the operating area were continuously identified. The charging load of electric vehicles in the region was predicted based on the identified model. By analyzing the model parameter identification effect and the charging load prediction results, the effectiveness and feasibility of the proposed prediction method were verified.

     

/

返回文章
返回