叶永盛, 徐燕龙, 李阳, 严芳芳, 黎丽丽, 黄江华. 基于相似周和模态分解的融合模型电动汽车负荷预测[J]. 电网技术, 2025, 49(5): 1910-1919. DOI: 10.13335/j.1000-3673.pst.2024.0225
引用本文: 叶永盛, 徐燕龙, 李阳, 严芳芳, 黎丽丽, 黄江华. 基于相似周和模态分解的融合模型电动汽车负荷预测[J]. 电网技术, 2025, 49(5): 1910-1919. DOI: 10.13335/j.1000-3673.pst.2024.0225
YE Yongsheng, XU Yanlong, LI Yang, YAN Fangfang, LI Lili, HUANG Jianghua. Electric Vehicle Load Forecasting With Fusion Model Based on Similar Weeks and Mode Decomposition[J]. Power System Technology, 2025, 49(5): 1910-1919. DOI: 10.13335/j.1000-3673.pst.2024.0225
Citation: YE Yongsheng, XU Yanlong, LI Yang, YAN Fangfang, LI Lili, HUANG Jianghua. Electric Vehicle Load Forecasting With Fusion Model Based on Similar Weeks and Mode Decomposition[J]. Power System Technology, 2025, 49(5): 1910-1919. DOI: 10.13335/j.1000-3673.pst.2024.0225

基于相似周和模态分解的融合模型电动汽车负荷预测

Electric Vehicle Load Forecasting With Fusion Model Based on Similar Weeks and Mode Decomposition

  • 摘要: 随着电动汽车的快速发展,其带来的庞大随机负荷对配电网的安全稳定运行带来了挑战。针对电动汽车负荷数据存在非线性和特征不明显等特点,提出了一种基于相似周和模态分解的融合模型电动汽车负荷预测方法。首先,使用皮尔逊相关系数和动态时间规整(dynamic time warping,DTW)筛选出的相似周和特征组成相似周负荷序列。然后,使用自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)将相似周负荷序列分解为高频和低频分量,高频分量输入到卷积神经网络(convolutional neural network,CNN)-门控循环网络(gate recurrent unit,GRU)模型,低频分量输入到核极限学习机(kernel extreme learning machine,KELM)模型,并使用改进的麻雀搜索算法(improved sparrow search algorithm,ISSA)优化网络模型的超参数。最后,将不同分量的预测结果求和,输出最终负荷预测序列。实验表明,所提方法有着较快的预测速度和较高的预测精度。

     

    Abstract: With the rapid development of electric vehicles, the huge random load brought by electric vehicles has brought great challenges to the safe and stable operation of distribution networks. The electric vehicle load data are nonlinear, and the characteristics are not obvious, so a fusion model electric vehicle load forecasting method based on similar cycle and mode decomposition is proposed to solve the above problems. Firstly, the similar weeks and features screened by the Pearson correlation coefficient and dynamic time warping (DTW) were used to compose the similar weekly load sequence. Then, a complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is used to decompose the similar weekly load sequences into high-frequency and low-frequency components, and the high-frequency components are input into the convolutional neural network (CNN)-gate recurrent unit (GRU). The low-frequency components are fed into the kernel extreme learning machine (KELM) model, and the hyperparameters of the network model are optimized using an improved sparrow search algorithm. Finally, the forecast results of different components are summed to output the final load forecast sequence. Experimental results show that the proposed method has a faster prediction speed and higher prediction accuracy.

     

/

返回文章
返回