孟衡, 张涛, 王金, 张晋源, 李达, 时光蕤. 基于多尺度时空图卷积网络与Transformer融合的多节点短期电力负荷预测方法[J]. 电网技术, 2024, 48(10): 4297-4305. DOI: 10.13335/j.1000-3673.pst.2024.0168
引用本文: 孟衡, 张涛, 王金, 张晋源, 李达, 时光蕤. 基于多尺度时空图卷积网络与Transformer融合的多节点短期电力负荷预测方法[J]. 电网技术, 2024, 48(10): 4297-4305. DOI: 10.13335/j.1000-3673.pst.2024.0168
MENG Heng, ZHANG Tao, WANG Jin, ZHANG Jinyuan, LI Da, SHI Guangrui. Multi-node Short-term Power Load Forecasting Method Based on Multi-scale Spatiotemporal Graph Convolution Network and Transformer[J]. Power System Technology, 2024, 48(10): 4297-4305. DOI: 10.13335/j.1000-3673.pst.2024.0168
Citation: MENG Heng, ZHANG Tao, WANG Jin, ZHANG Jinyuan, LI Da, SHI Guangrui. Multi-node Short-term Power Load Forecasting Method Based on Multi-scale Spatiotemporal Graph Convolution Network and Transformer[J]. Power System Technology, 2024, 48(10): 4297-4305. DOI: 10.13335/j.1000-3673.pst.2024.0168

基于多尺度时空图卷积网络与Transformer融合的多节点短期电力负荷预测方法

Multi-node Short-term Power Load Forecasting Method Based on Multi-scale Spatiotemporal Graph Convolution Network and Transformer

  • 摘要: 深度学习的发展为处理电力系统中海量的负荷数据提供了良好的基础。然而,现有的负荷预测方法大多采用历史负荷序列的时间相关性构建模型,没有同时考虑相邻节点之间存在的空间耦合特性和外部因素的影响。由于图卷积神经网络在挖掘电力系统拓扑结构中的空间特征上具有巨大潜力,因此,该文提出一种基于属性增强的多尺度时空图卷积神经网络与Transformer融合的电力系统多节点负荷预测方法。首先,将外部因素建模为动态属性和静态属性,设计属性增强单元对这些因素进行编码,并利用快速最大互信息系数量化各节点负荷的动态耦合信息。其次,采用多尺度时空图卷积网络挖掘节点间的短期时空特征,同时采用Transformer补充挖掘各节点负荷的长期时域特征。最后,使用门控融合层对两个模型进行融合。在纽约公开负荷数据集上的实验结果表明,所提方法能够充分挖掘多节点负荷数据中的时空耦合特性,具有更高的预测精度和稳定性。

     

    Abstract: The development of deep learning provides a good foundation for processing massive load data in power systems. However, most of the existing load forecasting methods use the temporal correlation of historical load sequences to construct models without simultaneously considering the spatial coupling characteristics between neighboring nodes and the influence of external factors. Since graph convolutional neural networks have great potential in mining spatial features in power system topology, this paper proposes a multinode load forecasting method for power systems based on the fusion of attribute-enhanced multiscale spatiotemporal graph convolutional neural networks and Transformers. Firstly, the external factors are modeled as dynamic and static attributes, attribute enhancement units are designed to encode these factors, and the dynamic coupling information of loads at each node is quantified using the fast maximum mutual information system. Secondly, a multi-scale spatiotemporal graph convolutional network is used to mine the short-term spatiotemporal features among nodes, while a Transformer is used to supplement the mining of the long-term time-domain features of each node's load. Finally, the two models are fused using a gated fusion layer. The experimental results on the New York public load dataset show that the proposed method can fully exploit the spatiotemporal coupling characteristics in the multi-node load data with higher prediction accuracy and stability.

     

/

返回文章
返回