林顺富, 林屹峰, 李毅, 杨嘉钰, 李东东. 基于负荷高频特征图像化的非侵入式负荷辨识技术研究[J]. 电网技术, 2025, 49(3): 1236-1245. DOI: 10.13335/j.1000-3673.pst.2024.0085
引用本文: 林顺富, 林屹峰, 李毅, 杨嘉钰, 李东东. 基于负荷高频特征图像化的非侵入式负荷辨识技术研究[J]. 电网技术, 2025, 49(3): 1236-1245. DOI: 10.13335/j.1000-3673.pst.2024.0085
LIN Shunfu, LIN Yifeng, LI Yi, YANG Jiayu, LI Dongdong. Non-intrusive Load Identification Technology Based on High Frequency Feature Pictorialization of Load[J]. Power System Technology, 2025, 49(3): 1236-1245. DOI: 10.13335/j.1000-3673.pst.2024.0085
Citation: LIN Shunfu, LIN Yifeng, LI Yi, YANG Jiayu, LI Dongdong. Non-intrusive Load Identification Technology Based on High Frequency Feature Pictorialization of Load[J]. Power System Technology, 2025, 49(3): 1236-1245. DOI: 10.13335/j.1000-3673.pst.2024.0085

基于负荷高频特征图像化的非侵入式负荷辨识技术研究

Non-intrusive Load Identification Technology Based on High Frequency Feature Pictorialization of Load

  • 摘要: 随着智能电网高速建设发展,实现双向互动的智能用电逐渐成为电力系统主要发展目标之一,开展智能用电的关键在于获取用户侧的负荷信息,非侵入式负荷监测(non-intrusive load monitoring,NILM)技术在此起着关键作用。在基于电器开关事件检测的基础上,该文提出一种融合负荷高频特征的非侵入式负荷辨识方法。首先,提取负荷高频电流、电压波形,绘制U-I特性曲线灰度图并分别通过格拉姆角场、马尔可夫转移场算法将周期电流、周期瞬时有功功率转换为特征灰度图。其次,分别将灰度图放入图片的R通道、G通道、B通道中组成RGB图片。最后,利用ShuffleNetV2神经网络对特征RGB图片进行训练与辨识。实验验证了该方法能够在家庭电器种类复杂情况下,实现对居民用户负荷种类的有效辨识,且算法收敛速度较快,准确度高。

     

    Abstract: With the rapid development of the smart grid, two-way interactive intelligent power utilization has gradually become one of the main development goals of power systems. The non-intrusive load monitoring (NILM) technology is crucial in obtaining the user-side load information for intelligent power utilization. Based on the appliance switching on/off event detection, this paper proposes a non-intrusive load identification method harmonizing with load high-frequency features. Firstly, it extracts load high-frequency current and voltage waveforms, plots the U-I characteristic curve as a gray-scale diagram, and converts the cycle current and the cycle instantaneous active power into characteristic gray-scale diagrams by Gramian Angular Field and Markov Transition Field algorithms. Secondly, it puts the three grayscale images into the R-channel, G-channel, and B-channel of the picture to form an RGB picture. Finally, it trains the feature RGB pictures using the ShuffleNetV2 neural network. The experiment verifies that the method can identify household appliances efficiently with a wide variety of appliances with fast convergence and high accuracy.

     

/

返回文章
返回