徐杰, 高红均, 王仁浚, 王子晗, 刘俊勇. 面向三相配电网电压控制的物理模型辅助式深度强化学习方法[J]. 电网技术, 2025, 49(5): 2137-2146. DOI: 10.13335/j.1000-3673.pst.2024.0047
引用本文: 徐杰, 高红均, 王仁浚, 王子晗, 刘俊勇. 面向三相配电网电压控制的物理模型辅助式深度强化学习方法[J]. 电网技术, 2025, 49(5): 2137-2146. DOI: 10.13335/j.1000-3673.pst.2024.0047
XU Jie, GAO Hongjun, WANG Renjun, WANG Zihan, LIU Junyong. A Physical Model Assisted Deep Reinforcement Learning Approach for Voltage Control in Three-phase Distribution Networks[J]. Power System Technology, 2025, 49(5): 2137-2146. DOI: 10.13335/j.1000-3673.pst.2024.0047
Citation: XU Jie, GAO Hongjun, WANG Renjun, WANG Zihan, LIU Junyong. A Physical Model Assisted Deep Reinforcement Learning Approach for Voltage Control in Three-phase Distribution Networks[J]. Power System Technology, 2025, 49(5): 2137-2146. DOI: 10.13335/j.1000-3673.pst.2024.0047

面向三相配电网电压控制的物理模型辅助式深度强化学习方法

A Physical Model Assisted Deep Reinforcement Learning Approach for Voltage Control in Three-phase Distribution Networks

  • 摘要: 分布式光伏的大量并网加剧了配电网节点电压的幅值波动与三相不平衡程度,传统算法在面对三相不平衡配电网电压控制问题时存在求解速度和最优性方面的不足。基于此,该文提出了一种面向三相不平衡配电网电压控制的物理模型辅助式深度强化学习方法。首先,重点考虑光伏并网逆变器的无功调节能力、储能的充放电有功调节能力与其变流器的无功调节能力,构建了融入节点电压幅值偏差和电压三相不平衡度抑制的配电网电压控制模型。其次,针对该三相非线性耦合控制问题,该文提出的物理模型辅助式深度强化学习算法将储能的充放电物理特性引入到强化学习算法中,确保了在离线训练和在线决策过程中均不会出现储能载电量偏离可行域的现象。最后,采用IEEE三相123节点算例验证了所提方法的有效性。

     

    Abstract: The massive grid connection of distributed photovoltaic (PV) systems has exacerbated the fluctuation of nodal voltage magnitude and the degree of three-phase unbalance in distribution networks. Traditional algorithms fall short in solving the three-phase unbalanced distribution network voltage control problem in terms of solution speed and optimality. Against this backdrop, this paper introduces a physical-model-assisted deep reinforcement learning method tailored for three-phase unbalanced distribution network voltage control. Initially, the method primarily considers the reactive power regulation capability of PV inverters and energy storage's active power regulation capability, constructing a distribution network voltage control model that integrates nodal voltage magnitude deviation and voltage three-phase unbalance. Subsequently, to address this three-phase nonlinear coupled control issue, the proposed physics-model-assisted deep reinforcement learning algorithm incorporates the physical characteristics of energy storage into the reinforcement learning algorithm, ensuring that the state of charge of the energy storage does not deviate from the feasible domain during offline training and online decision-making processes. Ultimately, the effectiveness of the proposed method is validated using the IEEE three-phase 123-node test case.

     

/

返回文章
返回