王加荣, 杨博, 张芮, 张子健. 基于风电预测的碱性电解槽系统优化控制[J]. 电网技术, 2024, 48(7): 2940-2947. DOI: 10.13335/j.1000-3673.pst.2023.2183
引用本文: 王加荣, 杨博, 张芮, 张子健. 基于风电预测的碱性电解槽系统优化控制[J]. 电网技术, 2024, 48(7): 2940-2947. DOI: 10.13335/j.1000-3673.pst.2023.2183
WANG Jiarong, YANG Bo, ZHANG Rui, ZHANG Zijian. Optimization Control of Alkaline Electrolyzer System Based on Wind Power Prediction[J]. Power System Technology, 2024, 48(7): 2940-2947. DOI: 10.13335/j.1000-3673.pst.2023.2183
Citation: WANG Jiarong, YANG Bo, ZHANG Rui, ZHANG Zijian. Optimization Control of Alkaline Electrolyzer System Based on Wind Power Prediction[J]. Power System Technology, 2024, 48(7): 2940-2947. DOI: 10.13335/j.1000-3673.pst.2023.2183

基于风电预测的碱性电解槽系统优化控制

Optimization Control of Alkaline Electrolyzer System Based on Wind Power Prediction

  • 摘要: 离网型风氢系统在制氢时,风电出力的波动性会导致电解槽的频繁启停,降低电解槽的使用寿命和制氢效率。因此,需要根据风电出力情况,合理调整电解槽的运行状态和功率。为有效控制电解槽,提出一种基于风电预测的多目标滚动优化(multi-objective rolling optimization,MRO)控制方法对风氢系统的电解槽进行控制。首先,对风电功率进行预测,并对预测值进行一阶差分运算,并根据结果确定系统电解槽的运行机组数量。然后,采用多目标适应度函数对电解槽进行滚动优化,平衡各电解槽的运行时间、启停次数、待机时间以及波动功率。最后,根据实时功率顺序分配电解槽的功率和运行状态。为验证所提控制方法的有效性,将所提方法与简单启停(simple start-stop,SS)控制策略和阵列轮值(array rotation,AR)控制策略相比。仿真结果表明,所提方法的电解槽具有更低的启停次数和更高的产氢量,可以有效提高风氢系统的经济性。

     

    Abstract: The fluctuation of wind power output in the off-grid wind hydrogen system during hydrogen production can lead to frequent stop-stops of the electrolyzer, reducing its service life and hydrogen production efficiency. Therefore, it is necessary to adjust the operating status and power of the electrolyzer reasonably based on the wind power output situation. To effectively control the electrolyzer, a multi-objective rolling optimization (MRO) control method based on wind power prediction is proposed to control the electrolyzer of the wind hydrogen system. First, predict the wind power, perform a first-order differential operation on the predicted values, and determine the number of operating units for the electrolyzer based on the results. Then, a multi-objective fitness function is used to perform rolling optimization on the electrolyzer, balancing the electrolyzer's operating time, start-stop times, standby time, and fluctuating power. Finally, the power and operating status of the electrolyzer are sequentially allocated based on the real-time power situation. To verify the effectiveness of the proposed control method, compare it with the simple start-stop (SS) control strategy and the array rotation (AR) control strategy. The simulation results show that the proposed method has fewer start-stop times and higher hydrogen production in the electrolyzer, which can effectively improve the economy of the wind hydrogen system.

     

/

返回文章
返回