张海峰, 任洲洋, 冯健冰, 张炜. 基于内驱进化预测模型和载荷能力动态评估的变压器周前重过载预警方法[J]. 电网技术, 2024, 48(10): 4349-4357. DOI: 10.13335/j.1000-3673.pst.2023.1947
引用本文: 张海峰, 任洲洋, 冯健冰, 张炜. 基于内驱进化预测模型和载荷能力动态评估的变压器周前重过载预警方法[J]. 电网技术, 2024, 48(10): 4349-4357. DOI: 10.13335/j.1000-3673.pst.2023.1947
ZHANG Haifeng, REN Zhouyang, FENG Jianbing, ZHANG Wei. A Week-ahead Heavy and Overload Warning Strategy Based on an Endogenous Evolutionary Forecasting Model and a Transformer Rating Dynamic Evaluation Method[J]. Power System Technology, 2024, 48(10): 4349-4357. DOI: 10.13335/j.1000-3673.pst.2023.1947
Citation: ZHANG Haifeng, REN Zhouyang, FENG Jianbing, ZHANG Wei. A Week-ahead Heavy and Overload Warning Strategy Based on an Endogenous Evolutionary Forecasting Model and a Transformer Rating Dynamic Evaluation Method[J]. Power System Technology, 2024, 48(10): 4349-4357. DOI: 10.13335/j.1000-3673.pst.2023.1947

基于内驱进化预测模型和载荷能力动态评估的变压器周前重过载预警方法

A Week-ahead Heavy and Overload Warning Strategy Based on an Endogenous Evolutionary Forecasting Model and a Transformer Rating Dynamic Evaluation Method

  • 摘要: 精准预判变压器重过载事件对于消除安全隐患、提高供电可靠性至关重要。现有的变压器重过载预警方法无法应对负荷数据的时序分布漂移(temporal covariate shift,TCS)现象,并且尚未考虑变压器载荷能力动态变化的特点,导致现有预警方法存在适应性差、预警精度不稳定等问题。针对上述问题,该文提出基于内驱进化预测模型和载荷能力动态评估的变压器周前重过载预警方法。首先,基于Informer方法建立周前负荷预测模型,利用该模型的泛化误差特征,构建基于领域自适应理论的预测修正模型,缩小历史负荷数据与未来数据的分布差异;其次,针对重过载负荷的数据分布特征随时间动态变化的特点,该文充分考虑“近大远小”的预测原则,基于样本权重矩阵建立预测模型的内驱进化更新模型,持续提高预测模型在未来负荷数据上的适应性,有效应对时序分布漂移现象。此外,构建考虑变压器冷却方式的热点温度计算模型,基于热点温度等因素建立变压器动态载荷能力评估方法。最后,提出考虑变压器动态载荷能力的重过载预警方法,并采用我国西部某供电局多台变压器实测数据进行验证分析,结果表明,该文方法的负荷预测精度最高提升32.55%,有效提高变压器周前重过载预警精度,具有较强的普适性。

     

    Abstract: Accurate transformer heavy and overload event forecasting improves power supply dependability and safety. The existing transformer heavy and overload warning strategies must be more accurate and attainable. They cannot manage temporal covariate shift (TCS) or dynamic transformer rating (DTR), which is the main issue. This paper presents a week-ahead heavy and overload warning method to address the above challenges. Informer is used to create a week-ahead load forecasting model. Domain adaption (DA) models reduce the distribution gap between historical and future load data. The data distribution changes with time; hence, an evolutionary updating model is proposed. A transformer cooling mode-based hot-spot temperature (HST) model and an assessment model for transformer load capacity are proposed. Finally, a DTR-based heavy and overload warning method is proposed. The proposed method is validated using the measured data collected from a power supply bureau in western China. The simulation results demonstrate a maximum improvement of 32.55% in load forecasting accuracy, and the suggested method is universal and outperforms the existing methods.

     

/

返回文章
返回