廖若愚, 刘友波, 沈晓东, 高红均, 唐冬来, 刘俊勇. 基于双向循环插补网络的分布式光伏集群时序数据耦合增强方法[J]. 电网技术, 2024, 48(7): 2784-2794. DOI: 10.13335/j.1000-3673.pst.2023.1681
引用本文: 廖若愚, 刘友波, 沈晓东, 高红均, 唐冬来, 刘俊勇. 基于双向循环插补网络的分布式光伏集群时序数据耦合增强方法[J]. 电网技术, 2024, 48(7): 2784-2794. DOI: 10.13335/j.1000-3673.pst.2023.1681
LIAO Ruoyu, LIU Youbo, SHEN Xiaodong, GAO Hongjun, TANG Donglai, LIU Junyong. Time Series Data Coupling Enhancement Method of Distributed Photovoltaic Cluster Based on Bidirectional Recurrent Imputation Network[J]. Power System Technology, 2024, 48(7): 2784-2794. DOI: 10.13335/j.1000-3673.pst.2023.1681
Citation: LIAO Ruoyu, LIU Youbo, SHEN Xiaodong, GAO Hongjun, TANG Donglai, LIU Junyong. Time Series Data Coupling Enhancement Method of Distributed Photovoltaic Cluster Based on Bidirectional Recurrent Imputation Network[J]. Power System Technology, 2024, 48(7): 2784-2794. DOI: 10.13335/j.1000-3673.pst.2023.1681

基于双向循环插补网络的分布式光伏集群时序数据耦合增强方法

Time Series Data Coupling Enhancement Method of Distributed Photovoltaic Cluster Based on Bidirectional Recurrent Imputation Network

  • 摘要: 分布式光伏点多面广、局部渗透率高、安装环境复杂多变,真实可靠的量测数据是其性能分析、出力预测、运维调控的基础。然而,传感器故障和通信堵塞等因素会造成量测值缺失,恶化原始数据质量,进而影响配电网运行决策的准确性。传统数据修复方法只考虑单一量测值的分布特征,忽略了多维时序数据的潜在耦合关系,修复精度有限。为此,该文提出一种基于双向多阶段循环插补网络和Seq2Seq-Attention的时序数据耦合增强方法,改进了循环插补网络的结构,并引入衰减机制,能利用少量未缺失数据,潜在地挖掘原始数据的整体分布规律,一次性对多个光伏场站完成高质量数据修复。实验结果表明,所提方法在高比例缺失情况下仍有良好的修复性能,可明显增强分布式光伏集群的基础数据质量,提升电网运营商对光伏集群的细粒度感知能力。

     

    Abstract: Distributed photovoltaic systems are widely distributed, with high local penetration rates and complex and ever-changing installation environments. Reliable measurement data is the basis for performance analysis, output prediction, and operation and maintenance control. However, factors such as sensor failures and communication blockages can lead to missing measurement values, deteriorating the quality of raw data, and thus affecting the accuracy of distribution network operation decision-making. Traditional data repair methods only consider the distribution characteristics of a single measurement value, ignoring the coupling relationship of multidimensional time series data, resulting in low repair accuracy. A coupled data enhancement method based on a bidirectional multi-stage recurrent imputation network is proposed to address this issue. Experimental results demonstrate that the proposed method exhibits good repair performance even under high levels of missing data, effectively enhancing the quality of fundamental data for distributed photovoltaic clusters, and improving the fine-grained perception capability of grid operators towards photovoltaic clusters.

     

/

返回文章
返回