康永强, 王兆赟, 党露芝, 孟昱, 李帅兵. 低气压条件下IGBT模块局部放电特性及机理研究[J]. 电网技术, 2024, 48(10): 4406-4415. DOI: 10.13335/j.1000-3673.pst.2023.1676
引用本文: 康永强, 王兆赟, 党露芝, 孟昱, 李帅兵. 低气压条件下IGBT模块局部放电特性及机理研究[J]. 电网技术, 2024, 48(10): 4406-4415. DOI: 10.13335/j.1000-3673.pst.2023.1676
KANG Yongqiang, WANG Zhaoyun, DANG Luzhi, MENG Yu, LI Shuaibing. Research on Partial Discharge Characteristics and Mechanisms of IGBT Modules Under Low Pressure Conditions[J]. Power System Technology, 2024, 48(10): 4406-4415. DOI: 10.13335/j.1000-3673.pst.2023.1676
Citation: KANG Yongqiang, WANG Zhaoyun, DANG Luzhi, MENG Yu, LI Shuaibing. Research on Partial Discharge Characteristics and Mechanisms of IGBT Modules Under Low Pressure Conditions[J]. Power System Technology, 2024, 48(10): 4406-4415. DOI: 10.13335/j.1000-3673.pst.2023.1676

低气压条件下IGBT模块局部放电特性及机理研究

Research on Partial Discharge Characteristics and Mechanisms of IGBT Modules Under Low Pressure Conditions

  • 摘要: 高海拔环境给绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT)模块绝缘可靠性带来严峻挑战,为探究IGBT模块在高海拔条件下的局部放电特性,搭建了低气压IGBT局部放电检测平台,测量了其在交流工频电压下20~100 kPa气压范围内的局部放电起始电压(partial discharge inception voltage,PDIV)、熄灭电压(partial discharge extinction voltage,PDEV)、最大视在电荷量、平均电荷量、放电脉冲重复率以及局部放电相位分布谱图(phase resolved partial discharge,PRPD)等特征参量,结果表明:在70~100 kPa气压下,IGBT模块局部放电现象不明显,60 kPa时出现明显的局部放电,放电位置主要集中在电压极性反转前后,并随着气压进一步下降,PRPD相位逐渐变宽,放电量及放电重复率明显升高。之后利用有限元分析方法对IGBT模块截止时的场强分布进行了分析,发现IGBT模块键合线引脚、硅胶和芯片交界处以及铜板、硅胶和陶瓷板交界处电场最为集中,且不同介质材料界面处存在大量微气隙通道,是外部气压变化向IGBT模块内部传递的重要路径。微气隙通道中场强更为集中,且在低气压条件下微气隙通道内电子自由程更大,使得局部放电更加剧烈,不同极性电荷逐渐在微气隙通道电极和硅胶两侧聚集,在外加电压极性反转时与空间电荷场强叠加,导致局部放电异常剧烈。研究结果可为IGBT模块在低气压条件下的绝缘设计及安全可靠运行提供参考。

     

    Abstract: The high-altitude environment severely challenges the insulation reliability of IGBT modules. A low-pressure IGBT partial discharge detection platform was built to explore the partial discharge characteristics of IGBT modules under high altitude conditions. The partial discharge inception voltage (PDIV), extinction voltage (PDEV), maximum apparent charge, average charge, discharge pulse repetition rate, and phase resolved partial discharge (PRPD) were measured in the pressure range of 20~100 kPa under AC power frequency voltage. The results show that the partial discharge phenomenon of the IGBT module is not obvious at 70~100 kPa pressure and obvious partial discharge occurs at 60 kPa. The discharge position is mainly concentrated before and after the voltage polarity reversal, and as the pressure further decreases, the phase of PRPD gradually widens, and the discharge amount and discharge repetition rate increase significantly. Then, the finite element analysis method is used to analyze the field intensity distribution of the IGBT module at the cut-off time. It is found that the electric field at the junction of the IGBT module bonding wire pin, silica gel, and chip, as well as the junction of copper plate, silica gel, and ceramic plate. is the most concentrated. There are many micro air gap channels at the interface of different dielectric materials, an important path for the external pressure change to transmit to the IGBT module. The field strength in the micro air gap channel is more concentrated, and the electron-free path in the micro air gap channel is larger under low pressure, which makes the partial discharge more intense. Different polar charges gradually accumulate on both sides of the micro-air gap channel electrode and silica gel. When the polarity of the applied voltage is reversed, it is superimposed with the space charge field strength, resulting in abnormal severe partial discharge. The research results can provide a reference for the insulation design and safe and reliable operation of IGBT modules under low-pressure conditions.

     

/

返回文章
返回