倪子瞻, 罗颖婷, 江俊飞, 张立静, 盛戈皞. 基于自适应扩展卡尔曼滤波的变压器顶层油温多时间尺度预测[J]. 电网技术, 2024, 48(10): 4397-4405. DOI: 10.13335/j.1000-3673.pst.2023.1657
引用本文: 倪子瞻, 罗颖婷, 江俊飞, 张立静, 盛戈皞. 基于自适应扩展卡尔曼滤波的变压器顶层油温多时间尺度预测[J]. 电网技术, 2024, 48(10): 4397-4405. DOI: 10.13335/j.1000-3673.pst.2023.1657
NI Zizhan, LUO Yingting, JIANG Junfei, ZHANG Lijing, SHENG Gehao. Multi-timescale Prediction of Transformer Top Oil Temperature Based on Adaptive Extended Kalman Filter[J]. Power System Technology, 2024, 48(10): 4397-4405. DOI: 10.13335/j.1000-3673.pst.2023.1657
Citation: NI Zizhan, LUO Yingting, JIANG Junfei, ZHANG Lijing, SHENG Gehao. Multi-timescale Prediction of Transformer Top Oil Temperature Based on Adaptive Extended Kalman Filter[J]. Power System Technology, 2024, 48(10): 4397-4405. DOI: 10.13335/j.1000-3673.pst.2023.1657

基于自适应扩展卡尔曼滤波的变压器顶层油温多时间尺度预测

Multi-timescale Prediction of Transformer Top Oil Temperature Based on Adaptive Extended Kalman Filter

  • 摘要: 为实现电力变压器的负荷优化调度和热故障及时预警,提高电力设备的运行可靠性,该文提出一种基于自适应扩展卡尔曼滤波算法的顶层油温短期-超短期多时间尺度预测方法。该方法将卡尔曼滤波算法和Susa热路等值模型相结合,选取顶层油温、油指数和油时间常数作为状态变量,环境温度和负载电流作为输入量,通过对顶层油温估计值和观测值的比对实现油指数和油时间常数的迭代优化,以提高顶层油温多时间尺度下的预测精度。此外,该模型利用自适应噪声估计器修正噪声统计参量,以自动优化简便噪声初值设定,从而进一步提高模型的预测准确度。以2台110kV油浸式变压器为例进行分析,结果表明该方法对顶层油温的日内超短期预测、日前短期预测,相较于热路等值模型计算和扩展卡尔曼滤波算法有着更高的预测准确度。

     

    Abstract: To realize the load optimization scheduling of power transformers and timely warning of thermal faults to improve the operational reliability of power equipment, this paper proposes a short-term and ultra-short-term multi-timescale prediction method of top oil temperature based on an adaptive extended Kalman filtering algorithm. The method combines the Kalman filtering algorithm and the Susa thermal circuit equivalent model, selects the top oil temperature, oil index, and oil time constant as state variables, ambient temperature, and load current as the inputs. It achieves iterative optimization of the oil index and oil time constant by comparing the estimated and observed values of the top oil temperature to improve the prediction accuracy of the top oil temperature in multiple time scales. In addition, the model utilizes an adaptive noise estimator to correct the noise statistical parameters to automatically optimize the simple noise initial value setting, thus further improving the model's prediction accuracy. Taking two 110kV oil-immersed transformers as examples, the results show that the method has higher prediction accuracy for ultra-short-term and short-term prediction of the top oil temperature compared with the hot circuit equivalent model calculation and the extended Kalman filtering algorithm.

     

/

返回文章
返回