陈远扬, 谭益, 李勇. 融合深度神经网络的电力系统经济-环保随机调度方法[J]. 电网技术, 2025, 49(5): 1993-2003. DOI: 10.13335/j.1000-3673.pst.2023.1424
引用本文: 陈远扬, 谭益, 李勇. 融合深度神经网络的电力系统经济-环保随机调度方法[J]. 电网技术, 2025, 49(5): 1993-2003. DOI: 10.13335/j.1000-3673.pst.2023.1424
CHEN Yuanyang, TAN Yi, LI Yong. Power System Stochastic Economic-environmental Dispatch Method Integrated With Deep Neural Networks[J]. Power System Technology, 2025, 49(5): 1993-2003. DOI: 10.13335/j.1000-3673.pst.2023.1424
Citation: CHEN Yuanyang, TAN Yi, LI Yong. Power System Stochastic Economic-environmental Dispatch Method Integrated With Deep Neural Networks[J]. Power System Technology, 2025, 49(5): 1993-2003. DOI: 10.13335/j.1000-3673.pst.2023.1424

融合深度神经网络的电力系统经济-环保随机调度方法

Power System Stochastic Economic-environmental Dispatch Method Integrated With Deep Neural Networks

  • 摘要: 通过优化调度改善电网有功潮流分布、减小火电大气污染物与二氧化碳排放,是实现电力系统环保、经济、安全运行的重要途径。针对含碳捕集电厂、风力发电、常规火电等多种电源的电力系统,该文综合考虑二氧化碳与大气污染物排放、风电出力随机性、N−1故障等多类型因素,建立了面向环保、安全、经济运行的电力系统有功随机调度模型。在该模型中,目标函数考虑了火电的环保与燃料成本、风电成本、N−1故障后校正控制成本等因素,约束条件包括正常运行约束、N−1故障后计及校正控制的电网安全约束等。针对所提有功随机调度模型的特点,该文提出了融合全连接型深度神经网络的快速高效求解方法。该方法通过全连接型深度神经网络构建用于优化软件寻优搜索的初始点,进而加速所提模型的求解过程。最后,该文通过3个修改后的IEEE测试系统验证了所提模型与方法的有效性。

     

    Abstract: It is important to achieve the environmental, economic, and secure operation of power systems by improving active power flow distribution and reducing atmospheric pollutant and CO2 emissions of thermal generators, which are achieved via optimal dispatch. Focusing on power systems with multiple types of generators, such as carbon capture power plants, wind generation, and conventional thermal generators, this paper considers the multiple factors such as the CO2 and atmospheric pollutant emissions, the stochastic wind power, and the N−1 contingency. It proposes the stochastic active power dispatch model for the environmental, secure, and economic operation of power systems. In this model, the environmental and fuel costs of thermal generators, wind power costs, and the post-contingency correction control cost are included in the objective function. In the constraints of the proposed model, the constraints of normal operation and the secure constraints with post-contingency correction control are considered. Considering the characteristics of the proposed stochastic active power dispatch model, this paper proposes a fast and high-efficient method based on the fully connected deep neural network (FCDNN) to solve this model. In this method, FCDNN is used to obtain the initial point adopted in the optimization software, which can speed up the solving process. Finally, three modified IEEE test systems are used to validate the effectiveness of the proposed model and method.

     

/

返回文章
返回