李宏伟, 宋玉峰, 李帅兵, 朱宇辰, 康永强, 董海鹰. 基于ArcGIS路网结构与交通拥挤度分析的电动汽车充电负荷预测方法[J]. 电网技术, 2025, 49(5): 1920-1930. DOI: 10.13335/j.1000-3673.pst.2023.1420
引用本文: 李宏伟, 宋玉峰, 李帅兵, 朱宇辰, 康永强, 董海鹰. 基于ArcGIS路网结构与交通拥挤度分析的电动汽车充电负荷预测方法[J]. 电网技术, 2025, 49(5): 1920-1930. DOI: 10.13335/j.1000-3673.pst.2023.1420
LI Hongwei, SONG Yufeng, LI Shuaibing, ZHU Yuchen, KANG Yongqiang, DONG Haiying. Electric Vehicle Charging Load Prediction Based on ArcGIS Road Network Structure and Traffic Congestion Analysis[J]. Power System Technology, 2025, 49(5): 1920-1930. DOI: 10.13335/j.1000-3673.pst.2023.1420
Citation: LI Hongwei, SONG Yufeng, LI Shuaibing, ZHU Yuchen, KANG Yongqiang, DONG Haiying. Electric Vehicle Charging Load Prediction Based on ArcGIS Road Network Structure and Traffic Congestion Analysis[J]. Power System Technology, 2025, 49(5): 1920-1930. DOI: 10.13335/j.1000-3673.pst.2023.1420

基于ArcGIS路网结构与交通拥挤度分析的电动汽车充电负荷预测方法

Electric Vehicle Charging Load Prediction Based on ArcGIS Road Network Structure and Traffic Congestion Analysis

  • 摘要: 电动汽车充电负荷在时空分布上具有随机性,其中路网结构与交通拥挤度是影响负荷时空分布的重要因素。针对传统路网结构模型未考虑道路的等级及弯曲特性,且不能较好地反映各路段分时拥挤度的不足,提出一种基于ArcGIS路网结构与交通拥挤度分析的电动汽车充电负荷预测方法。首先,通过ArcGIS对道路数据属性进行划分,并使用Python对高德开放平台实时路况图层进行处理,得到每条路段分时段的加权拥挤系数,以此构建出路网模型表达式;其次,分析了区域内城市兴趣点分布特性,采用核密度估计法对城市功能区进行划分;在此基础上,使用出行链模型分析电动汽车用户出行行为特征,以改进弗洛伊德算法选择耗时最短出行路径,并通过蒙特卡洛法对区域内电动汽车用户充电负荷进行预测;最后,通过对兰州某区一天内的电动私家车充电负荷需求进行仿真预测,并与其他文献方法进行对比,验证了所提方法的有效性。结果表明,所提方法能较为直观地映该区域内各功能区不同时段的充电负荷需求分布特点,且提高了总体负荷预测精度。

     

    Abstract: The charging load of electric vehicles is random in the spatial and temporal distribution, and the road network structure and traffic congestion are important factors affecting the spatial and temporal distribution of the load. The traditional road network structure model often ignores the grade and bending characteristics of the road and cannot better reflect the time-sharing congestion of each road section. Firstly, the road data attributes are divided by ArcGIS. Python processes the real-time road condition layer of the Amap Open Platform to obtain the weighted congestion coefficient of each road section in different periods to construct the road network model expression. Secondly, the distribution characteristics of urban points of interest in the study area are analyzed, and the urban functional areas are divided by the kernel density estimation method. Then, the travel chain model is used to analyze the travel behavior characteristics of electric vehicle users to improve the Floyd algorithm to select the shortest travel route. The improved Floyd algorithm solves the redundancy calculation problem of the traditional Floyd algorithm, reduces the algorithm's complexity, and predicts the charging load of electric vehicle users in the region through the Monte Carlo method. Finally, the effectiveness of the proposed method was verified by simulating and predicting the charging load demand of electric private cars in a certain district of Lanzhou within a day. The results show that the proposed method can more intuitively reflect the distribution characteristics of charging load demand in different functional areas of the region, improving the overall load forecasting accuracy.

     

/

返回文章
返回