梁远升, 程康, 王钢, 李海锋, 张思捷, 徐真理, 徐征. 基于概率预测与随机响应面法的新能源孤岛配电网实时风险评估与调控策略[J]. 电网技术, 2023, 47(12): 4948-4957. DOI: 10.13335/j.1000-3673.pst.2023.1294
引用本文: 梁远升, 程康, 王钢, 李海锋, 张思捷, 徐真理, 徐征. 基于概率预测与随机响应面法的新能源孤岛配电网实时风险评估与调控策略[J]. 电网技术, 2023, 47(12): 4948-4957. DOI: 10.13335/j.1000-3673.pst.2023.1294
LIANG Yuansheng, CHENG Kang, WANG Gang, LI Haifeng, ZHANG Sijie, XU Zhenli, XU Zheng. Real-time Risk Assessment and Regulation Strategy of New Energy Islanded Distribution Network Based on Probabilistic Prediction and Stochastic Response Surface Methodology[J]. Power System Technology, 2023, 47(12): 4948-4957. DOI: 10.13335/j.1000-3673.pst.2023.1294
Citation: LIANG Yuansheng, CHENG Kang, WANG Gang, LI Haifeng, ZHANG Sijie, XU Zhenli, XU Zheng. Real-time Risk Assessment and Regulation Strategy of New Energy Islanded Distribution Network Based on Probabilistic Prediction and Stochastic Response Surface Methodology[J]. Power System Technology, 2023, 47(12): 4948-4957. DOI: 10.13335/j.1000-3673.pst.2023.1294

基于概率预测与随机响应面法的新能源孤岛配电网实时风险评估与调控策略

Real-time Risk Assessment and Regulation Strategy of New Energy Islanded Distribution Network Based on Probabilistic Prediction and Stochastic Response Surface Methodology

  • 摘要: 高比例分布式电源的不确定性给孤岛配电网的稳定运行带来了的巨大的挑战。针对基于传统分布模型的源荷短期预测存在尖峰和重尾的缺点,采用双向长短时记忆(bidirectional long and short-term memory,BiLSTM)神经网络与非参数核密度法(kernel density method,KDE)结合的方法,构建了多场景及不同时间尺度下源荷预测误差的分布模型;并在此基础上,系统多时段运行调控过程中,考虑短时气象的不确定性波动,采用混合整数二阶锥规划(mixed-integer second-order cone programming,MISOCP)对潮流模型进行松弛,并由随机响应面(stochastic response surface,SRSM)得到系统的概率潮流;基于随机响应面法改进Sobol’法,建立计及源荷不确定性的孤岛配电网运行风险的全局灵敏度分析模型。基于此提出一种基于BiLSTM-SRSM法的风险实时风险评估及调控策略。最后,采用IEEE33节点的辐射型配电网系统验证了所提方法的可行性。

     

    Abstract: The uncertainty of high proportion of distributed generation brings great challenges to the stable operation of the islanded distribution networks. In this paper, for the short-term prediction of source and load based on the traditional distribution model has the shortcomings of sharp peaks and heavy tails, the distribution model of source and load prediction error under multi-scenarios and different time scales is constructed by combining the bidirectional long and short-term memory (BiLSTM) neural network with the nonparametric kernel density method (KDE). On this basis, the system operates and regulates in multi-temporal operation and control process, taking into account the short-term meteorological fluctuations in the uncertainty. Then, the distflow model is relaxed by using the mixed integer second-order cone programming and the probabilistic Distflow of the system is obtained from the stochastic response surface (SRSM). Based on the stochastic response surface to improve the Sobol' method, the global sensitivity analysis model of the isolated island distribution network operation risk taking into account the source and load uncertainty is established. For this reason, a risk real-time risk assessment and regulation strategy based on BiLSTM-SRSM method is proposed. Finally, the feasibility of the proposed method is verified using a radial distribution system with the IEEE33 nodes.

     

/

返回文章
返回