武宇翔, 韩肖清, 牛哲文, 闫博阳, 赵津蔓, 杨晶. 融合多注意力深度神经网络的可解释光伏功率区间预测[J]. 电网技术, 2024, 48(7): 2928-2939. DOI: 10.13335/j.1000-3673.pst.2023.0978
引用本文: 武宇翔, 韩肖清, 牛哲文, 闫博阳, 赵津蔓, 杨晶. 融合多注意力深度神经网络的可解释光伏功率区间预测[J]. 电网技术, 2024, 48(7): 2928-2939. DOI: 10.13335/j.1000-3673.pst.2023.0978
WU Yuxiang, HAN Xiaoqing, NIU Zhewen, YAN Boyang, ZHAO Jinman, YANG Jing. Interpretable Photovoltaic Power Interval Prediction Using Multi-attention Deep Neural Networks[J]. Power System Technology, 2024, 48(7): 2928-2939. DOI: 10.13335/j.1000-3673.pst.2023.0978
Citation: WU Yuxiang, HAN Xiaoqing, NIU Zhewen, YAN Boyang, ZHAO Jinman, YANG Jing. Interpretable Photovoltaic Power Interval Prediction Using Multi-attention Deep Neural Networks[J]. Power System Technology, 2024, 48(7): 2928-2939. DOI: 10.13335/j.1000-3673.pst.2023.0978

融合多注意力深度神经网络的可解释光伏功率区间预测

Interpretable Photovoltaic Power Interval Prediction Using Multi-attention Deep Neural Networks

  • 摘要: 现有光伏出力预测研究对复杂时空相关性的影响考虑不足,且深度学习自身的黑箱性质使其预测结果的可解释性差。为提高多时空尺度下光伏功率预测精度并增强模型可解释能力,提出融合时空注意力深度神经网络的光伏出力预测模型及其可解释性分析方法。首先,建立了时间-空间-特征的多维注意力机制,结合深度神经网络和分位数回归模型构建光伏区间预测模型,并以注意因子为导向指导模型优化。然后,提出了面向深度学习模型预测过程和预测结果的可解释性体系,基于神经元电导梯度法从模型结构上解释其预测机制,进一步结合注意力权重挖掘影响模型功率预测的核心时空特征。为验证解释结果的可靠性,通过沙普利加性原理量化考虑时间差异性的特征全局边际贡献,并结合实例样本溯因模型的预测依据。最后,在中国某省分布式光伏电站数据中进行验证,结果表明,所提模型相比传统预测模型具有更高的预测精度,可以挖掘光伏出力的时空规律性并合理解释模型预测机制。

     

    Abstract: The existing researches on the photovoltaic (PV) power output prediction have insufficient consideration for the influence of the complex spatio-temporal correlations and the black box nature of the deep learning hinders the interpretability of the prediction. To improve the accuracy of the PV power prediction at the multiple spatio-temporal scales and enhance the model's interpretability, a PV power prediction model that combines the spatio-temporal attention with the deep neural networks is proposed, as well as an analysis method for its interpretability. Firstly, a multi-dimensional attention mechanism is established, considering the temporal, spatial, and feature dimensions. This mechanism is combined with the deep neural networks and the quantile regression models to construct a PV interval prediction model. The model optimization is guided by the attention factors. Furthermore, a framework for explaining the prediction process and results of the deep learning models is proposed. The prediction mechanism is explained based on the structure of the model using the gradient method of neuron conductance. Additionally, the attention weights are used to identify the core spatio-temporal features that influence the power prediction. To validate the reliability of the interpretability results, the global marginal contributions of features are quantified using the Shapley additive principle. The prediction basis of the model is also combined with the sample-tracing models. Finally, the proposed model is validated using the data from the distributed PV power plants in a province in China. The results show that the proposed model has a higher prediction accuracy compared to the traditional prediction model.

     

/

返回文章
返回