张军, 刘鹏, 滕文涛, 李瑶琴, 谢梁, 彭宗仁, 刘闯. 超高海拔地区1000kV变电站导线连接金具防晕型结构设计与优化[J]. 电网技术, 2024, 48(4): 1787-1798. DOI: 10.13335/j.1000-3673.pst.2023.0774
引用本文: 张军, 刘鹏, 滕文涛, 李瑶琴, 谢梁, 彭宗仁, 刘闯. 超高海拔地区1000kV变电站导线连接金具防晕型结构设计与优化[J]. 电网技术, 2024, 48(4): 1787-1798. DOI: 10.13335/j.1000-3673.pst.2023.0774
ZHANG Jun, LIU Peng, TENG Wentao, LI Yaoqin, XIE Liang, PENG Zongren, LIU Chuang. Design and Optimization of Corona-proof Structure for Wire Connection Hardware at 1000kV Substations in Ultra-high-altitude Areas[J]. Power System Technology, 2024, 48(4): 1787-1798. DOI: 10.13335/j.1000-3673.pst.2023.0774
Citation: ZHANG Jun, LIU Peng, TENG Wentao, LI Yaoqin, XIE Liang, PENG Zongren, LIU Chuang. Design and Optimization of Corona-proof Structure for Wire Connection Hardware at 1000kV Substations in Ultra-high-altitude Areas[J]. Power System Technology, 2024, 48(4): 1787-1798. DOI: 10.13335/j.1000-3673.pst.2023.0774

超高海拔地区1000kV变电站导线连接金具防晕型结构设计与优化

Design and Optimization of Corona-proof Structure for Wire Connection Hardware at 1000kV Substations in Ultra-high-altitude Areas

  • 摘要: 防晕型金具设计是特高压变电站电晕防治和电磁环境治理的关键,特别是在高海拔地区,电晕防治尤为重要。采用有限元仿真和试验相结合的研究方法,提出了满足工程需求的海拔校正指数公式、线性公式和金具表面场强控制值,计算获得了高海拔特高压变电站导线连接金具表面的电场分布,给出了各导线连接金具的结构优化方案并通过了高海拔电晕试验验证。结果表明:按文中推荐方法计算得到的4000m海拔校正系数为1.51,与标准Q/GDW 551—2010推荐值相差1.9%。高海拔特高压变电站中导线连接金具表面场强应进行差异化控制:上层金具不超过1.32kV/mm,局部不超过1.52kV/mm;下层金具不超过0.99kV/mm,局部不超过1.14kV/mm。采用所提推荐方案时,各导线连接金具电晕熄灭电压均高于698.5kV且保有一定安全裕度,可满足4000m高海拔特高压变电站使用要求。研究成果可为我国超高海拔地区特高压变电站的防晕型金具设计提供依据,助力我国构建绿色环保的新型能源体系。

     

    Abstract: The design of anti-corona fittings is the key to the prevention and control of corona and electromagnetic environment at the UHV substations, especially in high-altitude areas where corona prevention is particularly important. In this article, by using the finite element simulation combined with the experimental, the altitude correction index formulas, the linear formulas, and the metal surface field strength control values that meet the engineering requirements are proposed. The electric field distribution on the surface of the wire connection fittings at the high-altitude UHV substations is calculated, and the structural optimization schemes for each of the wire connection fittings are provided, which are verified through the high-altitude corona tests. The results show that the correction coefficient for the 4000m altitude calculated in this proposed method is 1.51, which is 1.9% different from the recommended value of Q/GDW 551-2010. The differential control should be carried out on the surface field strength of the wire connection fittings at the high-altitude UHV substations: the upper layer fittings should not exceed 1.32kV/mm thick with the local not thicker than 1.52kV/mm; the lower level hardware should not exceed 0.99kV/mm thick with the local not thicker than 1.14kV/mm. When adopting the recommended scheme in this article, the corona extinction voltage of all the wire connection fittings is higher than 698.5kV but maintains a certain safety margin, which is able to meet the requirements for the use at the 4000m high altitude 1000kV substations. The research results of this article will provide a basis for the design of the anti-corona fittings for the 1000kV substations at the ultra-high-altitude areas in China, assisting in the construction of a green and environmentally friendly new energy system in China.

     

/

返回文章
返回