陈汝斯, 孙吉广, 刘艳, 刘海光, 智楠, 余笑东, 付宇昂. 新能源及储能联合发电系统黑启动时空支撑能力评估及应用[J]. 电网技术, 2025, 49(3): 988-997. DOI: 10.13335/j.1000-3673.pst.2023.0761
引用本文: 陈汝斯, 孙吉广, 刘艳, 刘海光, 智楠, 余笑东, 付宇昂. 新能源及储能联合发电系统黑启动时空支撑能力评估及应用[J]. 电网技术, 2025, 49(3): 988-997. DOI: 10.13335/j.1000-3673.pst.2023.0761
CHEN Rusi, SUN Jiguang, LIU Yan, LIU Haiguang, ZHI Nan, YU Xiaodong, FU Yuang. Evaluation and Application of Space-time Support Capacity for Black Start of New Energy and Energy Storage Combined Power Generation System[J]. Power System Technology, 2025, 49(3): 988-997. DOI: 10.13335/j.1000-3673.pst.2023.0761
Citation: CHEN Rusi, SUN Jiguang, LIU Yan, LIU Haiguang, ZHI Nan, YU Xiaodong, FU Yuang. Evaluation and Application of Space-time Support Capacity for Black Start of New Energy and Energy Storage Combined Power Generation System[J]. Power System Technology, 2025, 49(3): 988-997. DOI: 10.13335/j.1000-3673.pst.2023.0761

新能源及储能联合发电系统黑启动时空支撑能力评估及应用

Evaluation and Application of Space-time Support Capacity for Black Start of New Energy and Energy Storage Combined Power Generation System

  • 摘要: 配备储能的新能源机组具有作为黑启动电源的潜力,研究其在初期黑启动阶段的黑启动能力对于构建与新型电力系统相适应的应急防御支撑体系具有重要意义。考虑到新能源场站黑启动能力的时空变化特性,提出以包含负荷水平、源-荷电气距离和启动服务安全水平要素的三元表对新能源场站的黑启动能力进行量化表征,以此为基础,定义黑启动时空支撑能力。引入长短期记忆神经网络与知识图谱,其中利用长短期记忆神经网络进行启动服务安全水平快速预测,进而进行黑启动时空支撑能力评估;知识图谱则将滚动更新的数据存储并进行可视化展示。最后,结合实例说明了新能源场站黑启动时空支撑能力滚动评估的未来应用场景。

     

    Abstract: New energy units equipped with energy storage have the potential to serve as blackstart power sources. Studying their black start capability during the initial black start stage is significant for building an emergency defense support system suitable for the new power system. Considering the spatiotemporal variation characteristics of the black start capability of new energy stations, a ternary table containing elements such as load level, source load electrical distance, and start service safety level is proposed to characterize the black start capability of new energy stations quantitatively. Based on this, define the black start space-time support capability. The short - and long-term memory neural network and knowledge map are introduced, in which the short - and long-term memory neural network is used to predict the security level of startup services quickly and then assess the space-time support ability of black startup. The knowledge graph stores and visualizes the rolling updated data. Finally, the future application scenarios for the rolling evaluation of the black start spatiotemporal support capacity of new energy stations were illustrated with examples.

     

/

返回文章
返回