范茜茜, 王国强, 罗贺, 台建玮. 基于N-BEATS与辅助编码器的短期电力负荷预测[J]. 电网技术, 2024, 48(4): 1612-1621. DOI: 10.13335/j.1000-3673.pst.2023.0759
引用本文: 范茜茜, 王国强, 罗贺, 台建玮. 基于N-BEATS与辅助编码器的短期电力负荷预测[J]. 电网技术, 2024, 48(4): 1612-1621. DOI: 10.13335/j.1000-3673.pst.2023.0759
FAN Xixi, WANG Guoqiang, LUO He, TAI Jianwei. Short-term Electricity Load Forecasting Based on N-BEATS With Auxiliary Encoders[J]. Power System Technology, 2024, 48(4): 1612-1621. DOI: 10.13335/j.1000-3673.pst.2023.0759
Citation: FAN Xixi, WANG Guoqiang, LUO He, TAI Jianwei. Short-term Electricity Load Forecasting Based on N-BEATS With Auxiliary Encoders[J]. Power System Technology, 2024, 48(4): 1612-1621. DOI: 10.13335/j.1000-3673.pst.2023.0759

基于N-BEATS与辅助编码器的短期电力负荷预测

Short-term Electricity Load Forecasting Based on N-BEATS With Auxiliary Encoders

  • 摘要: 短期电力负荷预测的准确性对智能电网平稳高效运行具有重要意义,但多种因素影响下的负荷数据具有较强的非平稳性与随机波动性,使得高精度的短期电力负荷预测面临挑战。为充分挖掘负荷序列中的趋势特征与周期性特征,准确提取与电力负荷存在潜在相关性的辅助信息特征,提升短期电力负荷预测精度,该文提出了一种基于神经基扩展分析(neural basis expansion analysis,N-BEATS)与辅助编码器的短期电力负荷预测模型。该模型包含两个并行的编码器,基于神经基扩展分析(neural basis expansion analysis,N-BEATS)模型的负荷特征编码器和基于多头注意力机制的辅助信息编码器,分别用于学习负荷数据中的时序特征与辅助信息特征。同时,构建特征融合模块将时序特征和辅助信息特征构造成联合特征向量,并设计基于门控循环单元(gated recurrent unit,GRU)的预测解码器模块进行短期电力负荷预测。在GEFCom2014公开数据集上进行实验,结果表明所提方法与长短期记忆(long short-term memory,LSTM)网络模型、卷积神经网络(convolutional neural network,CNN)-LSTM网络模型、序列到序列(sequence-to-sequence,Seq2Seq)网络模型、季节自回归差分移动平均(seasonal autoregressive integrated moving average,SARIMA)模型及支持向量回归模型(support vector returns,SVR)等基线模型相比,在预测精度方面具有明显优势,平均绝对百分比误差(mean absolute percentage error,MAPE)平均提升了24.16%。

     

    Abstract: The accuracy of short-term electricity load forecasting is important for the smooth and efficient operation of smart grids, but the strong non-smoothness and random fluctuation of the load data under the influence of various factors make the high-precision short-term power load forecasting challenging. To fully explore the trend features and the periodic features in the load sequence, accurately extract the auxiliary information features that have a potential correlation with the power load, and improve the short-term power load forecasting accuracy, this paper proposes a short-term power load forecasting model based on the N-BEATS and the auxiliary encoders. The model consists of two parallel encoders, a load feature encoder based on the neural base extension analysis model(N-BEATS) and an auxiliary information encoder based on the multi-headed attention mechanism, which are used to learn the temporal features and the auxiliary information features in the load data respectively. At the same time, a feature fusion module is constructed to construct the temporal and the auxiliary information features into a joint feature vector, and a prediction decoder module based on GRU units is designed for short-term electricity load forecasting. Experiments are conducted on the GEFCom2014 public dataset, and the results show that the proposed method has significant advantages in terms of prediction accuracy compared with the baseline models such as the long and short-term memory(LSTM) network model, the CNN-LSTM network model, the Seq2Seq network model, the seasonal autoregressive differential moving average (SARIMA) model, and the support vector regression(SVR) model, and the MAPE index is improved by 24.16% on average.

     

/

返回文章
返回