王灿, 方仍存, 雷何, 孙建军, 查晓明. 基于最优经济运行区域的主动配电网日前-日内协同调度方法[J]. 电网技术, 2024, 48(4): 1602-1611. DOI: 10.13335/j.1000-3673.pst.2023.0537
引用本文: 王灿, 方仍存, 雷何, 孙建军, 查晓明. 基于最优经济运行区域的主动配电网日前-日内协同调度方法[J]. 电网技术, 2024, 48(4): 1602-1611. DOI: 10.13335/j.1000-3673.pst.2023.0537
WANG Can, FANG Rengcun, LEI He, SUN Jianjun, ZHA Xiaoming. Day-ahead and Intraday Coordinated Economy Schedule Method Based on the Optimal Operation Region in the Active Distribution Network[J]. Power System Technology, 2024, 48(4): 1602-1611. DOI: 10.13335/j.1000-3673.pst.2023.0537
Citation: WANG Can, FANG Rengcun, LEI He, SUN Jianjun, ZHA Xiaoming. Day-ahead and Intraday Coordinated Economy Schedule Method Based on the Optimal Operation Region in the Active Distribution Network[J]. Power System Technology, 2024, 48(4): 1602-1611. DOI: 10.13335/j.1000-3673.pst.2023.0537

基于最优经济运行区域的主动配电网日前-日内协同调度方法

Day-ahead and Intraday Coordinated Economy Schedule Method Based on the Optimal Operation Region in the Active Distribution Network

  • 摘要: 传统的日前-日内协同调度通常以与日前时序计划曲线偏差最小作为日内目标函数,当日内新能源出力预测值与日前相差较大时,储能装置(energy storage systems,ESS)等由于其时间耦合约束日内调整范围有限,导致经济性和灵活性较差。对此,提出了基于最优经济运行区域(optimal economic operation region,OEOR)的主动配电网(active distribution networks,ADN)日前-日内协同调度方法。在日前阶段,构建线性化ADN调度模型,基于拉丁超立方采样法生成的大量随机场景下调控设备优化曲线,以全时间段内设备出力上下界内所包含的随机场景优化结果数量最大为目标,考虑储能装置荷电状态的相邻时段约束和微型燃气轮机的爬/滑坡率,构建OEOR生成模型。最后,在日内阶段,调控设备在OEOR内滚动优化调整,当该时段优化值贴近OEOR边界时,考虑相邻时段出力约束,将OEOR扩展为最优经济极限运行区域(E-OEOR)。算例结果表明,所提方法相比于传统方法能够更有效地提升配电网经济性。

     

    Abstract: The conventional approach to day-ahead and intraday coordination aims to minimize the disparities between the day-ahead reference planning and the actual intraday operation for devices like energy storage systems (ESS). However, devices tied to the time dynamics, such as the ESSs, have limited intra-day adjustability, leading to poor economy and flexibility. This paper proposes a novel method for day-ahead and intraday coordination using the optimal economic operation region (OEOR) in active distribution networks (ADN). A linearized ADN scheduling model is established in the day-ahead stage. Numerous stochastic scenarios, generated by the Latin hypercube sampling algorithm, yield the optimal sequential curves. To maximize the coverage of optimal outcomes considering the constraints like charging and discharging of the ESS and the climbing and landslide rates of the micro gas turbine generators, a OEOR model is created. In the intraday stage, the outputs of relevant devices are adjusted within the OEOR using the receding-horizon optimization. If the results approach the OEOR bounds and the adjacent period constraints, the region is expanded to the extreme OEOR (E-OEOR). Case studies confirm the method's efficacy, enhancing the ADN economic efficiency compared to the traditional methods.

     

/

返回文章
返回