崔晗, 薛彤, 王琦, 汤奕. 针对电力系统人工智能算法的数据投毒后门攻击方法与检测方案[J]. 电网技术, 2024, 48(12): 5024-5033. DOI: 10.13335/j.1000-3673.pst.2023.0363
引用本文: 崔晗, 薛彤, 王琦, 汤奕. 针对电力系统人工智能算法的数据投毒后门攻击方法与检测方案[J]. 电网技术, 2024, 48(12): 5024-5033. DOI: 10.13335/j.1000-3673.pst.2023.0363
CUI Han, XUE Tong, WANG Qi, TANG Yi. The Poisoning Attack and Detection Shemes for AI Algorithms in Power Systems[J]. Power System Technology, 2024, 48(12): 5024-5033. DOI: 10.13335/j.1000-3673.pst.2023.0363
Citation: CUI Han, XUE Tong, WANG Qi, TANG Yi. The Poisoning Attack and Detection Shemes for AI Algorithms in Power Systems[J]. Power System Technology, 2024, 48(12): 5024-5033. DOI: 10.13335/j.1000-3673.pst.2023.0363

针对电力系统人工智能算法的数据投毒后门攻击方法与检测方案

The Poisoning Attack and Detection Shemes for AI Algorithms in Power Systems

  • 摘要: 人工智能(artificial intelligence,AI)算法已经成为应对新型电力系统不确定性和复杂性的重要手段,其利用历史或仿真数据拟合特征与问题间的关联关系,避免了对复杂物理机理的建模分析,从而可以降低问题维度并提高计算效率。然而,AI的黑箱运行模式亦存在安全风险,攻击者可通过恶意手段影响算法模型的训练过程,在模型中植入后门,从而控制算法的输出结果,最终影响电力系统相关业务。该文分析了对电力系统AI植入后门的可行性,设计了一种针对电力系统基于数据投毒的后门攻击方法,根据系统节点入侵难度构造后门触发器致使AI对特定场景样本产生错误判别;为防御此类攻击,在模型层面和样本层面设计了后门攻击的检测方案。最后在AI驱动的暂态稳定评估案例中测试了所提攻击与检测效果。

     

    Abstract: Artificial Intelligence (AI) algorithms have become an important method to cope with the uncertainty and complexity of the new power system. Fitting the correlation between features and problems using historical or simulation data avoids modeling and analyzing complex physical mechanisms, thereby reducing problem dimensions and improving computational efficiency. However, the black-box operation mode of AI also poses security risks. Attackers can influence the training process of the algorithm model through malicious approaches, embedding backdoors in the model, and ultimately controlling the output results of the algorithm, thereby affecting the power system operation. This article analyzes the feasibility of embedding backdoors in AI for power systems and designs a data poisoning-based backdoor attack method for power systems. Based on the difficulty of invading system nodes, a backdoor trigger is constructed to cause AI to produce erroneous discrimination for specific scenario samples. To defend against such attacks, this article designs detection schemes for backdoor attacks at the model and sample levels. Finally, the proposed attack and detection effects are tested in a case of AI-driven transient stability evaluation.

     

/

返回文章
返回