朱峻良, 武志刚, 刘嘉宁. 基于半动态交通均衡的电动汽车充电负荷概率分布建模[J]. 电网技术, 2024, 48(2): 640-649. DOI: 10.13335/j.1000-3673.pst.2023.0095
引用本文: 朱峻良, 武志刚, 刘嘉宁. 基于半动态交通均衡的电动汽车充电负荷概率分布建模[J]. 电网技术, 2024, 48(2): 640-649. DOI: 10.13335/j.1000-3673.pst.2023.0095
ZHU Junliang, WU Zhigang, LIU Jianing. Electric Vehicle Charging Load Probability Distribution Modeling Based on Semi-dynamic Traffic Equilibrium[J]. Power System Technology, 2024, 48(2): 640-649. DOI: 10.13335/j.1000-3673.pst.2023.0095
Citation: ZHU Junliang, WU Zhigang, LIU Jianing. Electric Vehicle Charging Load Probability Distribution Modeling Based on Semi-dynamic Traffic Equilibrium[J]. Power System Technology, 2024, 48(2): 640-649. DOI: 10.13335/j.1000-3673.pst.2023.0095

基于半动态交通均衡的电动汽车充电负荷概率分布建模

Electric Vehicle Charging Load Probability Distribution Modeling Based on Semi-dynamic Traffic Equilibrium

  • 摘要: 传统电动汽车充电负荷建模通常采用对电动汽车个体进行抽样模拟的方式,未能从分析机理的角度描述电动汽车群体相互作用形成的宏观运行状态。为此,提出一种基于半动态交通均衡模型和组合荷电状态(combined states of the charge,CSOC)概率计算的电动汽车充电负荷概率分布计算方法。首先,分析电动汽车的交通特性和充电特性,并提出一种可行路径集构建方法;然后,引入交通均衡理论进行电动汽车空间分布建模,建立考虑随机效用的半动态交通均衡模型,实现宏观交通流均衡分配。进一步地,从理论层面分析电动汽车群的荷电状态变化,建立基于CSOC的充电负荷概率分布计算模型。最后,分别在13节点路网和实际大路网中验证所提方法的有效性,并分析了电动汽车渗透率和路网结构对充电负荷概率分布的影响。

     

    Abstract: The traditional charging load modeling for electric vehicles (EVs) usually adopts the method of sampling simulation for an individual EV, which fails to describe the macroscopic operating states formed by the interaction of the EV groups from the perspective of analysis mechanism. Therefore, this paper proposes a method to calculate the probability distribution of EVs' charging load based on the semi-dynamic traffic equilibrium model and the combined states of the charge (CSOC) probability calculation. Firstly, the traffic and charging characteristics of EVs are analyzed, and a feasible path set construction is proposed. Then, the traffic equilibrium theory is introduced to model the spatial distribution of the EVs, and a semi-dynamic traffic equilibrium model considering random utility is established to realize the balanced distribution of the macroscopic traffic flow. Furthermore, the variation of the states of charge of an EV group is analyzed theoretically, and the calculation model of the probability distribution of charging load base on the CSOC is established. Finally, the effectiveness of the proposed method is verified on the 13-node road network and the actual large road network respectively, and the influence of the penetration of the EV and road network structure on the probability distribution of charging load is analyzed.

     

/

返回文章
返回