Abstract:
The applicability of reactive power planning model is significantly impacted by the huge amount of renewable energy sources loads that bring about the functioning uncertainty of the distribution network. This paper proposes a bi-level reactive power planning approach that combines the planning with the operation while taking into account the suppressing effect of the SVG (Static Var Generator) on the voltage uncertainty. Firstly, an affine power flow model is built with the dynamic voltage regulation strategy of the SVG in consideration, and an affine power flow algorithm is proposed to obtain the range of the current state quantity while satisfying the capacity constraint of the SVG. On this basis, a bi-level multi-objective reactive power optimization configuration model is established, taking the operational uncertainties into account. The configuration of SVG and capacitors are optimized with the purpose of reducing the scheme's equivalent annual total cost and the voltage fluctuation. Finally, an example is given to verify the rationality and economy of the uncertain reactive power planning scheme.