李明节, 梁志峰, 许涛, 杨登宇, 吴善锋. 基于敏感气温空间分布的度夏度冬日最大负荷预测与应用研究[J]. 电网技术, 2023, 47(3): 1088-1097. DOI: 10.13335/j.1000-3673.pst.2022.2144
引用本文: 李明节, 梁志峰, 许涛, 杨登宇, 吴善锋. 基于敏感气温空间分布的度夏度冬日最大负荷预测与应用研究[J]. 电网技术, 2023, 47(3): 1088-1097. DOI: 10.13335/j.1000-3673.pst.2022.2144
LI Mingjie, LIANG Zhifeng, XU Tao, YANG Dengyu, WU Shanfeng. Prediction and Application of Maximum Daily Load in Summer and Winter Based on Spatial Distribution of Sensitive Temperatures[J]. Power System Technology, 2023, 47(3): 1088-1097. DOI: 10.13335/j.1000-3673.pst.2022.2144
Citation: LI Mingjie, LIANG Zhifeng, XU Tao, YANG Dengyu, WU Shanfeng. Prediction and Application of Maximum Daily Load in Summer and Winter Based on Spatial Distribution of Sensitive Temperatures[J]. Power System Technology, 2023, 47(3): 1088-1097. DOI: 10.13335/j.1000-3673.pst.2022.2144

基于敏感气温空间分布的度夏度冬日最大负荷预测与应用研究

Prediction and Application of Maximum Daily Load in Summer and Winter Based on Spatial Distribution of Sensitive Temperatures

  • 摘要: 随着电气化率的提升,新型电力系统“双高双峰”特性愈发明显,准确预测度冬度夏日最大负荷对电力平衡安排、迎峰保电保供的重要性也更加突出。采用负荷分解理论,提出了基于敏感气温空间分布的夏季和冬季日最大负荷预测方法。利用社会发展因素,建立基础负荷与国内生产总值(gross domestic product,GDP)、居民消费价格指数(consumer price index,CPI)关联模型,为基础负荷的估算提供更客观、严谨的理论依据。根据各区域电网负荷占比识别重点分区,采用M-K (Mann-Kendall)检验确定分区敏感气温并统计各分区温变负荷范围,结合聚类分析方法构建分档位温变负荷预测模型。以国家电网有限公司经营区2021年度冬度夏日最大负荷预测为例,预测结果相比ARIMA (autoregressive integrated moving average)时序预测法、支持向量回归法(support vector regression,SVR)的结果更具优势。结合2022年度夏日最大负荷预测算例,进一步验证了所提方法和模型的有效性。

     

    Abstract: With the increase of electrification rate, the characteristics of "double heights and double peaks" of the new power system are becoming more and more obvious. The importance of accurately predicting the maximum load in summer and winter is also more prominent for the power balance arrangement, the peak power and supply guarantee. With load decomposition theories, this paper proposes a method of forecasting daily maximum load in summer and winter based on the spatial distribution of sensitive temperatures. Making full use of the social development factors, a correlation model between the basic load and the gross domestic product (GDP) and the consumer price index (CPI) is established in order to provide a more objective and rigorous theoretical basis for the estimation of the basic load. Key sub-regions are identified according to the load proportion of each regional power grid, the sensitive temperature of sub-regions is defined by the M-K (Mann-Kendall) test, and the range of sensitive temperature of sub-regions is then obtained by statistics. Forecasting models of temperature-related load of different grades is established referring to the cluster analysis method. In the case of forecasting maximum daily load of the State Grid business area in 2021 summer and winter, results of this paper are superior to which of the ARIMA (autoregressive integrated moving average) time series forecasting method and the SVR (support vector regression) method. The effectiveness of the algorithm and model is further verified in the case of forecasting maximum daily load in 2022 summer.

     

/

返回文章
返回