张志劲, 杨松澎, 万小东, 蒋兴良, 胡建林, 胡琴. 高海拔高速运行高铁车顶绝缘子风压分布及海拔修正[J]. 电网技术, 2024, 48(1): 425-433. DOI: 10.13335/j.1000-3673.pst.2022.1775
引用本文: 张志劲, 杨松澎, 万小东, 蒋兴良, 胡建林, 胡琴. 高海拔高速运行高铁车顶绝缘子风压分布及海拔修正[J]. 电网技术, 2024, 48(1): 425-433. DOI: 10.13335/j.1000-3673.pst.2022.1775
ZHANG Zhijin, YANG Songpeng, WAN Xiaodong, JIANG Xingliang, HU Jianlin, HU Qin. Wind Pressure Distribution and Altitude Correction of High-speed Rail Roof Insulators Operating at High Altitude and High Speed[J]. Power System Technology, 2024, 48(1): 425-433. DOI: 10.13335/j.1000-3673.pst.2022.1775
Citation: ZHANG Zhijin, YANG Songpeng, WAN Xiaodong, JIANG Xingliang, HU Jianlin, HU Qin. Wind Pressure Distribution and Altitude Correction of High-speed Rail Roof Insulators Operating at High Altitude and High Speed[J]. Power System Technology, 2024, 48(1): 425-433. DOI: 10.13335/j.1000-3673.pst.2022.1775

高海拔高速运行高铁车顶绝缘子风压分布及海拔修正

Wind Pressure Distribution and Altitude Correction of High-speed Rail Roof Insulators Operating at High Altitude and High Speed

  • 摘要: 车顶绝缘子是高铁动车组列车重要的组成部件,高海拔地区运行中车顶绝缘子在高速气流作用下周围风压分布形成负压区导致其综合气压远低于实际海拔对应的气压进而影响车顶绝缘子电气性能。该文基于计算流体力学(computational fluid dynamics,CFD),建立仿真模型,分析高速气流作用下车顶绝缘子周围风压分布特性及影响因素,并提出高海拔高速气流综合作用下车顶绝缘子电气强度修正方法。结果表明:车顶绝缘子的风压低值分布在侧风面伞裙根部(大伞在下表面根部,小伞在上表面根部);迎风面风压、背风面和侧风面风压的绝对值都随风速的增大呈指数增长,且海拔越低,增长越快;攻角为80°左右时将形成更明显的低压区;海拔4000m、运行速度为360km/h综合作用下车顶绝缘子形成负压相当于4599米海拔对应的气压,车顶绝缘子外绝缘修正应予以考虑。

     

    Abstract: The roof insulator is an important component of the high-speed EMU train. During the operation in high altitude areas, the negative pressure area is formed by the wind pressure distribution around the roof insulator under the action of high-speed air flow, resulting in its comprehensive air pressure far lower than the air pressure corresponding to the actual altitude, thus affecting the electrical performance of the roof insulator. Based on the computational fluid dynamics (CFD), this paper establishes a simulation model to analyze the wind pressure distribution characteristics and the influencing factors around the top insulator under the high-speed air flow. It proposes a method for correcting the electrical strength of the top insulator under the comprehensive action of the high-altitude high-speed air flow. The simulation results show that the low wind pressure of the roof insulator is distributed at the root of the umbrella skirt on the crosswind surface (i.e. at the root of the lower surface under a large umbrella and at the root of the upper surface under a small umbrella); The absolute values of the wind pressure on the windward side, the leeward side and the crosswind side all increase exponentially with the increase of the wind speed, and the lower the altitude, the faster the increase; When the angle of attack is around 80°, a more obvious low pressure region is formed; When the altitude is 4000m and the operating speed is 360km/h, the negative pressure formed by the roof insulator is equivalent to the air pressure corresponding to the altitude of 4599m. The external insulation correction of the roof insulator shall be considered.

     

/

返回文章
返回