蔡昌春, 程增茂, 张关应, 李源佳, 储云迪. 基于数据驱动的配电网无功优化[J]. 电网技术, 2024, 48(1): 373-382. DOI: 10.13335/j.1000-3673.pst.2022.1707
引用本文: 蔡昌春, 程增茂, 张关应, 李源佳, 储云迪. 基于数据驱动的配电网无功优化[J]. 电网技术, 2024, 48(1): 373-382. DOI: 10.13335/j.1000-3673.pst.2022.1707
CAI Changchun, CHENG Zengmao, ZHANG Guanying, LI Yuanjia, CHU Yundi. Reactive Power Optimization of Distribution Network Based on Data-driven Method[J]. Power System Technology, 2024, 48(1): 373-382. DOI: 10.13335/j.1000-3673.pst.2022.1707
Citation: CAI Changchun, CHENG Zengmao, ZHANG Guanying, LI Yuanjia, CHU Yundi. Reactive Power Optimization of Distribution Network Based on Data-driven Method[J]. Power System Technology, 2024, 48(1): 373-382. DOI: 10.13335/j.1000-3673.pst.2022.1707

基于数据驱动的配电网无功优化

Reactive Power Optimization of Distribution Network Based on Data-driven Method

  • 摘要: 传统无功电压控制由于分布式电源、储能以及柔性负荷的接入面临计算速度和精度上的挑战。该文提出了一种基于数据驱动的配电网无功电压优化方法,通过跟踪实际系统的运行参数,实现无功电压的主动控制。在极限学习机中引入自动编码器构建深度学习机制,利用自动编码器建立极限学习机输入–输出的直接耦合关系,实现无监督学习和有监督学习有机结合,缩短训练模型的迭代过程;利用蒙特卡洛法基于分布式电源、负荷预测信息构建配电网运行场景,利用深度极限学习机挖掘运行场景优化运行与无功调压设备状态间的内在联系,建立电网运行场景与系统无功调压策略的映射关系。该文提出的基于数据驱动的无功优化方法不依赖实际系统潮流计算,能够实现配电网运行状态的跟踪和无功调节设备的优化调度,为配电网无功电压的主动控制打下基础。

     

    Abstract: There are new challenges for the traditional reactive voltage control in computing speed and accuracy with the high penetration of distributed generation, energy storage and flexible load in the distribution network. In this paper, a data-driven reactive voltage control method is proposed for the control of the reactive voltage by tracking the operating parameters of the actual system. An auto encoder is combined into the extreme learning machine to construct a deep learning mechanism, and the direct coupling relationship between the input and output of the extreme learning machine is established based on the automatic encoder. The unsupervised learning and the supervised learning are comprehensively integrated to reduce the iterative process of the training model in the deep extreme learning machine. Then, a series of distribution network operation scenarios based on the distributed power supply and flexible load prediction information are built using the Monte Carlo method. The deep extreme learning machine is used to mine the internal relationship between the optimal operation in the operation scenarios and the status of the reactive voltage regulators. The mapping relationship between the grid operation scenarios and the reactive power voltage regulation strategies of the system is established. The proposed method realizes the tracking of the distribution network operation state and the optimal scheduling of reactive power regulation equipment without depending on the actual system power flow calculation, providing a support for the reactive voltage control.

     

/

返回文章
返回