黄越辉, 孙亚南, 李驰, 李湃, 宋子源. 基于条件生成对抗网络的多区域风电短期出力场景生成方法[J]. 电网技术, 2023, 47(1): 63-72. DOI: 10.13335/j.1000-3673.pst.2022.1191
引用本文: 黄越辉, 孙亚南, 李驰, 李湃, 宋子源. 基于条件生成对抗网络的多区域风电短期出力场景生成方法[J]. 电网技术, 2023, 47(1): 63-72. DOI: 10.13335/j.1000-3673.pst.2022.1191
HUANG Yuehui, SUN Yanan, LI Chi, LI Pai, SONG Ziyuan. Constructing Method of Short-term Output Scenarios for Multi-regional Wind Power Based on Conditional Generative Adversarial Network[J]. Power System Technology, 2023, 47(1): 63-72. DOI: 10.13335/j.1000-3673.pst.2022.1191
Citation: HUANG Yuehui, SUN Yanan, LI Chi, LI Pai, SONG Ziyuan. Constructing Method of Short-term Output Scenarios for Multi-regional Wind Power Based on Conditional Generative Adversarial Network[J]. Power System Technology, 2023, 47(1): 63-72. DOI: 10.13335/j.1000-3673.pst.2022.1191

基于条件生成对抗网络的多区域风电短期出力场景生成方法

Constructing Method of Short-term Output Scenarios for Multi-regional Wind Power Based on Conditional Generative Adversarial Network

  • 摘要: 基于预测功率结果,构建风电出力场景集是电力系统随机优化调度的重要基础。现有多区域风电出力场景生成方法主要是时空相关性系数约束的随机抽样方法。由于风电时空相关性特征的时变非线性,生成的场景集与风电实际出力差异较大。提出一种基于条件生成对抗网络的多区域风电出力场景生成方法。该方法采用三维卷积网络设计适用于多区域风电出力场景生成的网络结构,通过对条件生成对抗网络进行博弈训练,学习到多个区域风电实际出力数据的特征以及输入数据与输出数据之间的映射关系。以我国西北地区5个风电区域为例对所提方法进行分析,并与传统的以相关性系数为约束的拉丁超立方抽样方法进行对比;结果表明,所提方法生成的多区域出力场景集更符合风电出力特征。

     

    Abstract: Based on the predicted power results, constructing the wind power output scenarios set is an important factors for the stochastic optimal dispatch of the power system. The existing generation methods of multi-regional wind power output scenarios are mainly sampled randomly by the spatial-temporal correlation coefficients constraints. Due to the nonlinearity of the spatial-temporal correlationship characteristics of the wind cluster, the generated scenarios are quite different from the actual outputs of the clusters. This paper proposes a scenarios set constructing method of multi-regional wind power based on conditional generative adversarial network (CGAN). The method combines the spatial and temporal correlation characteristics of multi-regional outputs of wind power, and uses a three-dimensional convolutional network to design a network structure suitable for the generation of multi-regional output scenarios of wind power. The mapping relationship between the input data and the expected output scenarios is setup. The proposed method is verified by five wind power regions in northwest of China. The proposed method is also compared with the traditional Latin hypercube sampling (LHS) method constrained by the correlationship coefficients. The results show that the characteristcs of the multi-regional output scenatios constructed by the proposed method are more in line with that of the real wind power.

     

/

返回文章
返回