李丹, 甘月琳, 缪书唯, 杨帆, 梁云嫣, 胡越. 计及时间演变和空间相关的多风电场短期功率预测[J]. 电网技术, 2023, 47(3): 1117-1126. DOI: 10.13335/j.1000-3673.pst.2022.1188
引用本文: 李丹, 甘月琳, 缪书唯, 杨帆, 梁云嫣, 胡越. 计及时间演变和空间相关的多风电场短期功率预测[J]. 电网技术, 2023, 47(3): 1117-1126. DOI: 10.13335/j.1000-3673.pst.2022.1188
LI Dan, GAN Yuelin, MIAO Shuwei, YANG Fan, LIANG Yunyan, HU Yue. Short-term Power Prediction for Multiple Wind Farms Considering Temporal Evolution and Spatial Correlation[J]. Power System Technology, 2023, 47(3): 1117-1126. DOI: 10.13335/j.1000-3673.pst.2022.1188
Citation: LI Dan, GAN Yuelin, MIAO Shuwei, YANG Fan, LIANG Yunyan, HU Yue. Short-term Power Prediction for Multiple Wind Farms Considering Temporal Evolution and Spatial Correlation[J]. Power System Technology, 2023, 47(3): 1117-1126. DOI: 10.13335/j.1000-3673.pst.2022.1188

计及时间演变和空间相关的多风电场短期功率预测

Short-term Power Prediction for Multiple Wind Farms Considering Temporal Evolution and Spatial Correlation

  • 摘要: 针对多风电场站和多时间步的日前风电功率预测问题,提出了同时计及单风场功率时间演变和多风电场间空间相关的深度时空融合多风电场短期功率预测模型。它由门控循环单元、多核卷积层和时变模式注意力机制共同构成。首先通过门控循环单元和多核卷积层分别提取各风电场历史风电数据的时序和多周期特征;然后引入时变模式注意力机制对多风电场时变特征的演变模式赋予相关性权重,同时实现对多风电场功率时间演变规律的纵向追踪与横向对比。中国北方某风电基地实际算例结果表明,所提预测模型能有效利用风电功率时空特性,与现有多种预测模型相比具有更高的预测精度和更强的风功率时变模式学习能力。

     

    Abstract: To address the day-ahead wind power prediction for multiple wind farms and multiple time steps, a deeply space-time-fused short-term power prediction model for multiple wind farms considering the power's temporal evolution of each wind farm and the spatial correlation between the multiple wind farms is proposed. This model consists of gated recurrent units (GRU), multi-core convolutional layers, and a time-varying pattern attention mechanism. First, the temporal and multi-period features of the historical power data in each wind farm are extracted through the GRUs and the multi-core convolution layers, respectively. Then the time-varying pattern attention mechanism is introduced to give correlation weights to the time-varying feature evolution patterns in the multiple wind farms, simultaneously realizing the vertical tracking and the horizontal comparison of the power temporal evolution rules for multiple wind farms. The actual case results of a wind power base in northern China show that the prediction model is able to effectively utilize the wind power spatial and temporal features. It has higher prediction accuracy and stronger learning ability to the wind power time-varying patterns compared with several other popular prediction models.

     

/

返回文章
返回