朱介北, 徐思旸, 李炳森, 王云逸, 王杨, 俞露杰, 熊雪君, 王成山. 基于电网专家策略模仿学习的新型电力系统实时调度[J]. 电网技术, 2023, 47(2): 517-528. DOI: 10.13335/j.1000-3673.pst.2022.1032
引用本文: 朱介北, 徐思旸, 李炳森, 王云逸, 王杨, 俞露杰, 熊雪君, 王成山. 基于电网专家策略模仿学习的新型电力系统实时调度[J]. 电网技术, 2023, 47(2): 517-528. DOI: 10.13335/j.1000-3673.pst.2022.1032
ZHU Jiebei, XU Siyang, LI Bingsen, WANG Yunyi, WANG Yang, YU Lujie, XIONG Xuejun, WANG Chengshan. Real-time Security Dispatch of Modern Power System Based on Grid Expert Strategy Imitation Learning[J]. Power System Technology, 2023, 47(2): 517-528. DOI: 10.13335/j.1000-3673.pst.2022.1032
Citation: ZHU Jiebei, XU Siyang, LI Bingsen, WANG Yunyi, WANG Yang, YU Lujie, XIONG Xuejun, WANG Chengshan. Real-time Security Dispatch of Modern Power System Based on Grid Expert Strategy Imitation Learning[J]. Power System Technology, 2023, 47(2): 517-528. DOI: 10.13335/j.1000-3673.pst.2022.1032

基于电网专家策略模仿学习的新型电力系统实时调度

Real-time Security Dispatch of Modern Power System Based on Grid Expert Strategy Imitation Learning

  • 摘要: 随着可再生能源的大规模并网,电网运行逐渐表现出高阶不确定性的新特征,给系统安全稳定运行带来严峻挑战。基于模型驱动的传统实时调度方法需占用大量计算资源,而近几年受到广泛关注的强化学习(reinforcement learning,RL)方法由于处理高维复杂电网状态信息,存在训练速度缓慢等问题。为此,该文提出一种可用于电网实时调度的电网专家策略模仿学习方法(grid expert strategy imitation learning,GESIL)。该方法首先基于图论思想建立了电网模型,其次设计了考虑电网安全运行和电力平衡控制的电网专家策略,然后利用模仿学习融合专家策略与所建模型,获得可用于电网调度决策的GESIL智能体。该文在高比例新能源占比的IEEE 118节点修正模型中对比了GESIL、传统调度方法和RL方法。分析结果表明,GESIL可更加稳定高效地计算出电网运行优化方案和电力平衡控制策略,显著提升调度决策的优化效果和计算速度。

     

    Abstract: With the large-scale grid integration of renewable energy sources (RES), the power grid operation gradually exhibits a new characteristic of having high-order uncertainty, bring about serious challenges for the system operational security and stability. The traditional methods of model-driven generation scheduling require large amount of computational resources, whereas the widely-concerned Reinforcement Learning (RL) method bears the issues like slow training speed as processing the highly complexed and dimensional grid state information. For this reason, this paper proposes a novel method of Grid Expert Strategy Imitation Learning (GESIL)-based real-time security dispatch. Firstly, a grid model is established based on the graph theory. Secondly, a grid expert strategy considering secured power grid operation and power balance control is proposed. Then, imitation learning is used to combine the grid expert strategy with the proposed model to obtain a GESIL intelligent agent which is used to make specific grid dispatching decisions. A modified IEEE 118 bus system with high RES proportion is employed to compare the proposed GESIL to the traditional scheduling and the RL methods. The results show that the proposed GESIL is able to be more stable and efficient in computing the real-time dispatching decisions of grid operation and power balancing, enhancing the effect and computational speed of the dispatching decision computation.

     

/

返回文章
返回