贺才郡, 李开成, 杨王旺, 董宇飞, 宋朝霞, 范伟欣, 王伟. 基于双通道GAF和深度残差网络的电能质量复合扰动识别[J]. 电网技术, 2023, 47(1): 369-376. DOI: 10.13335/j.1000-3673.pst.2022.0644
引用本文: 贺才郡, 李开成, 杨王旺, 董宇飞, 宋朝霞, 范伟欣, 王伟. 基于双通道GAF和深度残差网络的电能质量复合扰动识别[J]. 电网技术, 2023, 47(1): 369-376. DOI: 10.13335/j.1000-3673.pst.2022.0644
HE Caijun, LI Kaicheng, YANG Wangwang, DONG Yufei, SONG Zhaoxia, FAN Weixin, WANG Wei. Power Quality Compound Disturbance Identification Based on Dual Channel GAF and Depth Residual Network[J]. Power System Technology, 2023, 47(1): 369-376. DOI: 10.13335/j.1000-3673.pst.2022.0644
Citation: HE Caijun, LI Kaicheng, YANG Wangwang, DONG Yufei, SONG Zhaoxia, FAN Weixin, WANG Wei. Power Quality Compound Disturbance Identification Based on Dual Channel GAF and Depth Residual Network[J]. Power System Technology, 2023, 47(1): 369-376. DOI: 10.13335/j.1000-3673.pst.2022.0644

基于双通道GAF和深度残差网络的电能质量复合扰动识别

Power Quality Compound Disturbance Identification Based on Dual Channel GAF and Depth Residual Network

  • 摘要: 针对传统电能质量扰动(power quality disturbances,PQDs)识别过程中存在的信号特征提取复杂、算法识别能力不足和复合扰动区分困难等问题,提出了一种利用格拉姆角场(Gramain angular fields,GAF)和深度残差网络(residual network,ResNet)进行复合扰动识别的方法。首先对一维时间序列PQDs信号进行标准化与极坐标编码,然后采用双通道GAF方法保留信号时序特征并映射成为二维图像,形成信息充足、特征明显的双通道图像训练集,在此基础上利用ResNet进行深层次的特征提取,构造适用于复合PQDs分类的网络框架。仿真实验表明该方法特征提取能力强,且抗噪性能好,并且对复合扰动识别率高。

     

    Abstract: Aiming at the problems of complex signal feature extraction, insufficient algorithm recognition and difficult discrimination of composite disturbances in the process of traditional power quality disturbances (PQDs) recognition, a method of composite disturbance recognition based on the Gram angular fields (GAF) and the depth residual network (ResNet) is proposed. Firstly, the one-dimensional time series PQDs signals are standardized and polar coded, and then the dual channel GAF method is used to retain the signal timing features and map them into two-dimensional images to form a two-channel image training set with sufficient information and obvious features. On this basis, ResNet is used for further feature extraction to construct a network framework suitable for the composite PQDs classification. Simulation results show that this method has a strong feature extraction, good anti-noise performance and high recognition rate of composite disturbance.

     

/

返回文章
返回