刘洁, 林舜江, 梁炜焜, 王琼, 刘明波. 基于高阶马尔可夫链和高斯混合模型的光伏出力短期概率预测[J]. 电网技术, 2023, 47(1): 266-274. DOI: 10.13335/j.1000-3673.pst.2022.0578
引用本文: 刘洁, 林舜江, 梁炜焜, 王琼, 刘明波. 基于高阶马尔可夫链和高斯混合模型的光伏出力短期概率预测[J]. 电网技术, 2023, 47(1): 266-274. DOI: 10.13335/j.1000-3673.pst.2022.0578
LIU Jie, LIN Shunjiang, LIANG Weikun, WANG Qiong, LIU Mingbo. Short-term Probabilistic Forecast for Power Output of Photovoltaic Station Based on High Order Markov Chain and Gaussian Mixture Model[J]. Power System Technology, 2023, 47(1): 266-274. DOI: 10.13335/j.1000-3673.pst.2022.0578
Citation: LIU Jie, LIN Shunjiang, LIANG Weikun, WANG Qiong, LIU Mingbo. Short-term Probabilistic Forecast for Power Output of Photovoltaic Station Based on High Order Markov Chain and Gaussian Mixture Model[J]. Power System Technology, 2023, 47(1): 266-274. DOI: 10.13335/j.1000-3673.pst.2022.0578

基于高阶马尔可夫链和高斯混合模型的光伏出力短期概率预测

Short-term Probabilistic Forecast for Power Output of Photovoltaic Station Based on High Order Markov Chain and Gaussian Mixture Model

  • 摘要: 为提高光伏电站出力预测的准确性,给调度决策人员提供更丰富的预测信息,提出一种基于高阶马尔可夫链(high order Markov chain,HMC)和高斯混合模型(Gaussian mixture model,GMM)的光伏电站短期出力概率预测方法。首先对光伏电站的历史出力数据进行HMC建模,通过计算邻近时段光伏出力数据的Pearson相关系数确定马尔可夫链的阶数,并统计历史数据得到邻近时段光伏出力的状态转移概率矩阵。然后以此为基础建立GMM形式的光伏出力概率预测模型,并提出基于相似气象条件下的数据样本对GMM中各高斯分布的均值与方差进行修正,最终得到光伏电站出力的概率密度函数。以实际光伏电站数据为例进行分析,结果表明所提出的概率预测方法具有较高的准确性,且与传统的点预测方法相比,概率预测能够为电网运行决策提供更多有益信息。

     

    Abstract: To improve the accuracy of photovoltaic output forecast and provide sufficient forecast information for the scheduling decision makers, a short-term probabilistic forecast for power output of the photovoltaic station based on the high order Markov chain (HMC) and the Gaussian mixture model (GMM) is proposed. Firstly, the HMC model was carried out for the historical output data of the photovoltaic power stations. The orders of the Markov chain were determined by calculating the Pearson correlation coefficient of the photovoltaic output power in the adjacent periods, and the state transition probability matrix was obtained by analyzing the statistical historical data. Based on this, a probability prediction model in the form of GMM was established, and the mean and variance of each Gaussian distribution were modified based on the meteorological similarity, and finally the probability density function of photovoltaic output was obtained. Taking the actual photovoltaic station data as an example, the results show that the proposed probabilistic prediction method has high accuracy. Compared with the traditional point prediction method, the probabilistic prediction method can provide more information for the power grid operation decision-making.

     

/

返回文章
返回