武新章, 王泽宇, 代伟, 赵子巍, 郭苏杭, 张冬冬. 基于异质聚类与Stacking的双集成光伏发电功率预测[J]. 电网技术, 2023, 47(1): 275-283. DOI: 10.13335/j.1000-3673.pst.2022.0408
引用本文: 武新章, 王泽宇, 代伟, 赵子巍, 郭苏杭, 张冬冬. 基于异质聚类与Stacking的双集成光伏发电功率预测[J]. 电网技术, 2023, 47(1): 275-283. DOI: 10.13335/j.1000-3673.pst.2022.0408
WU Xinzhang, WANG Zeyu, DAI Wei, ZHAO Ziwei, GUO Suhang, ZHANG Dongdong. Bi-ensembled Photovoltaic (PV) Power Prediction Based on Heterogeneous Clustering and Stacking[J]. Power System Technology, 2023, 47(1): 275-283. DOI: 10.13335/j.1000-3673.pst.2022.0408
Citation: WU Xinzhang, WANG Zeyu, DAI Wei, ZHAO Ziwei, GUO Suhang, ZHANG Dongdong. Bi-ensembled Photovoltaic (PV) Power Prediction Based on Heterogeneous Clustering and Stacking[J]. Power System Technology, 2023, 47(1): 275-283. DOI: 10.13335/j.1000-3673.pst.2022.0408

基于异质聚类与Stacking的双集成光伏发电功率预测

Bi-ensembled Photovoltaic (PV) Power Prediction Based on Heterogeneous Clustering and Stacking

  • 摘要: 光伏功率预测是实现能源优化分配与电网稳定运行的关键基础。然而传统方法中数据预处理不精细以及预测算法对数据挖掘不到位的问题,往往致使准确率不足。针对上述问题,该文提出基于聚类集成和预测集成的双集成光伏功率预测方法,以异质集成的方式提升了气象分类和功率预测的精度。首先,基于重标记法和投影法,构建了融合Kmeans、高斯混合模型(gaussian mixture model,GMM)、AGNES(agglomerative nesting)和BIRCH(balanced iterative reducing and clustering using hierarchies)4种异质算法的聚类集成框架,并依据滑动时间窗口筛选离群日,建立典型气象模型。其次,基于Stacking集成学习框架,在采用k折交叉验证法规避过拟合的基础上,构建由门控循环单元(gated recurrent unit,GRU)、随机森林(random forest,RF)、XGBoost和LightGBM组成的预测集成模型,深度挖掘光伏数据的潜在规律。最后以澳大利亚某光伏电站为例进行仿真,结果表明双集成功率预测的准确性比传统模型有较大提升,证明了聚类集成和预测集成的有效性。

     

    Abstract: Photovoltaic(PV) power prediction is the key basis for optimizing energy distribution and stabilizing power grid operation. Nevertheless, the issue of inaccurate prediction arises in the traditional methods from the imprecise data preprocessing and the inadequate prediction algorithm. Therefore, the paper raises a bi-ensembled PV power prediction based on the consensus clustering and the integration prediction, improving the accuracy of the meteorological classification and the power prediction by the heterogeneous integration. Firstly, based on the re-marking and the projection methods, the Kmeans-GMM-AGNES-BIRCH consensus clustering framework is constructed, which combines four heterogeneous clustering algorithms. Then, the typical meteorological model is established by selecting the outlier day according to the sliding time window. Secondly, by averting the overfits with the k-fold cross-validation regulation, the integration prediction model, the GRU-RF-XGBoost-LightGBM, is constructed to comprehensively explore the underlying laws of the PV data by using the Stacking framework. The simulation is conducted using the data from a PV power station in Australia. It proves that the prediction of the bi-ensembled model is superior to the common ones, verifying the validity of the consensus clustering and integration prediction model.

     

/

返回文章
返回