乔石, 王磊, 张鹏超, 闫群民, 王桂宝. 基于模态分解及注意力机制长短时间网络的短期负荷预测[J]. 电网技术, 2022, 46(10): 3940-3951. DOI: 10.13335/j.1000-3673.pst.2022.0368
引用本文: 乔石, 王磊, 张鹏超, 闫群民, 王桂宝. 基于模态分解及注意力机制长短时间网络的短期负荷预测[J]. 电网技术, 2022, 46(10): 3940-3951. DOI: 10.13335/j.1000-3673.pst.2022.0368
QIAO Shi, WANG Lei, ZHANG Pengchao, YAN Qunmin, WANG Guibao. Short-term Load Forecasting by Long- and Short-term Temporal Networks With Attention Based on Modal Decomposition[J]. Power System Technology, 2022, 46(10): 3940-3951. DOI: 10.13335/j.1000-3673.pst.2022.0368
Citation: QIAO Shi, WANG Lei, ZHANG Pengchao, YAN Qunmin, WANG Guibao. Short-term Load Forecasting by Long- and Short-term Temporal Networks With Attention Based on Modal Decomposition[J]. Power System Technology, 2022, 46(10): 3940-3951. DOI: 10.13335/j.1000-3673.pst.2022.0368

基于模态分解及注意力机制长短时间网络的短期负荷预测

Short-term Load Forecasting by Long- and Short-term Temporal Networks With Attention Based on Modal Decomposition

  • 摘要: 短期电力负荷受多种因素影响,具有波动性大、随机性强的特点,使得高精度的短期负荷预测比较困难。为充分提取负荷数据中的特征,提升短期负荷预测精度,提出了一种基于模态分解及注意力机制长短时间网络(long and short-term temporal networks with attention,LSTNet-Attn)的短期负荷预测模型。首先该模型采用自适应白噪声的完整经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)对包含大量高频分量且频率成分复杂的原始负荷时间序列进行处理,经频率分离后得到若干个包含不同频率成分的本征模函数(intrinsic mode functions,IMF)。其次,在采集特征的基础上构建日期特征,并通过Boruta算法优化输入数据维度冗余问题。然后,在上述基础上构建LSTNet-Attn预测模型,模型包括卷积模块、循环跳过模块、自回归(autoregressive,AR)模块和注意力机制模块。卷积模块和循环跳过模块提取输入负荷数据中高度非线性的长短期特征和线性特征;AR模块优化神经网络对线性特征识别不敏感问题;注意力机制实现对重要特征分配更多权重以捕获全局与局部的联系,优化模型提升预测精度。最后采用于麻省理工数据集进行实例验证,并与常用预测模型进行对比研究和模型消融研究,证明该模型有效提高了负荷预测的精确性。

     

    Abstract: Short-term electricity load has the characteristics of high volatility and randomness disturbed by a variety of factors, which may affect the accuracy of load forecasting. In order to fully extract the features in the load data and improve the accuracy of short-term load forecasting, a long- and short-term temporal networks with attention (LSTNet-Attn) short-term load forecasting model based on modal decomposition is proposed. Firstly, by using the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), the model processes the original load time series containing a large number of high-frequency components with complex frequency components, obtaining several intrinsic mode functions (IMF) containing different frequency components after frequency separation. Secondly, the date features are constructed on the basis of the collected features, and the redundancy problem of the input data dimensions is solved by the Boruta algorithm. Then, the LSTNet-Attn prediction model is constructed on the above basis, which includes a neural network module, an AR module and an attention mechanism module. The neural network module extracts the highly non-linear long- and short-term features and linear traits in the input load data, the AR module solves the insensitivity of the neural network for the linear feature recognition, and the attention mechanism enables more weights to be assigned to important features in order to capture the global and the local associations, optimizing the model to improve the prediction accuracy. Finally, the model is validated using the Umass Smart Dataset MIT dataset. Compared with the commonly used forecasting models and through the model ablation studies, the results demonstrate that the model effectively improves the accuracy of the load forecasting.

     

/

返回文章
返回