侯慧, 陈跃, 吴细秀, 侯婷婷, 方仍存, 唐金锐. 非预测机制下计及碳交易的家庭能量低碳优化实时管理[J]. 电网技术, 2023, 47(3): 1066-1077. DOI: 10.13335/j.1000-3673.pst.2022.0311
引用本文: 侯慧, 陈跃, 吴细秀, 侯婷婷, 方仍存, 唐金锐. 非预测机制下计及碳交易的家庭能量低碳优化实时管理[J]. 电网技术, 2023, 47(3): 1066-1077. DOI: 10.13335/j.1000-3673.pst.2022.0311
HOU Hui, CHEN Yue, WU Xixiu, HOU Tingting, FANG Rengcun, TANG Jinrui. Low-carbon Optimal Real-time Management Strategy for Home Energy Considering Carbon Trading Under Non-prediction Mechanisms[J]. Power System Technology, 2023, 47(3): 1066-1077. DOI: 10.13335/j.1000-3673.pst.2022.0311
Citation: HOU Hui, CHEN Yue, WU Xixiu, HOU Tingting, FANG Rengcun, TANG Jinrui. Low-carbon Optimal Real-time Management Strategy for Home Energy Considering Carbon Trading Under Non-prediction Mechanisms[J]. Power System Technology, 2023, 47(3): 1066-1077. DOI: 10.13335/j.1000-3673.pst.2022.0311

非预测机制下计及碳交易的家庭能量低碳优化实时管理

Low-carbon Optimal Real-time Management Strategy for Home Energy Considering Carbon Trading Under Non-prediction Mechanisms

  • 摘要: 传统家庭能量管理系统模型多基于预测或场景生成,并通过优化算法进行日前离线优化,但难以解决光伏、负荷等不确定性等问题。基于此,提出了一种非预测机制下计及碳交易的家庭能量低碳优化实时管理模型。首先,利用深度Q网络算法对不同类型负荷的动作状态空间进行定义,通过建立智能体避免使用历史数据及概率分布模型等预测机制。其次,在考虑系统碳排放等基础上,以用户电费–碳交易成本及满意度惩罚为目标,构建能量管理模型,并利用智能体与实时环境进行交互,在不确定性环境中进行实时求解。最后,在算例分析中通过与传统粒子群优化算法对比及不同模型参数分析,证明了所提模型具有较好的实时优化性能及鲁棒性。

     

    Abstract: Traditional home energy management system models are mostly based on forecasting or scenario generation and their offline day-ahead optimization is performed through the optimization algorithms. But it is difficult to solve the problems of flexible interactive resource uncertainties such as photovoltaic outputs and load demands. To address the above issue, a low-carbon optimal and real-time management strategy for home energy considering carbon trading under the non- prediction mechanisms is proposed. Under the non-prediction mechanisms, the action state spaces of loads are defined through the deep Q network algorithm with a multi-agent system established for management. Secondly, considering the constraints of load operation conditions and system carbon emissions, a real-time management model of the system is proposed taking as the goal. Solved by the multi-agent system, the model achieves the unified effect of electricity bill carbon trading cost and satisfaction punishment. Ultimately, by comparing with the heuristic algorithm and analyzing different parameters, the generalization and robustness of our real-time management strategy under the non-prediction mechanisms are verified.

     

/

返回文章
返回