杨维熙, 刘勇, 舒勤. 基于补充集合经验模态分解的短期负荷预测模型[J]. 电网技术, 2022, 46(9): 3615-3622. DOI: 10.13335/j.1000-3673.pst.2021.2583
引用本文: 杨维熙, 刘勇, 舒勤. 基于补充集合经验模态分解的短期负荷预测模型[J]. 电网技术, 2022, 46(9): 3615-3622. DOI: 10.13335/j.1000-3673.pst.2021.2583
YANG Weixi, LIU Yong, SHU Qin. A Short-term Load Forecasting Model Based on CEEMD[J]. Power System Technology, 2022, 46(9): 3615-3622. DOI: 10.13335/j.1000-3673.pst.2021.2583
Citation: YANG Weixi, LIU Yong, SHU Qin. A Short-term Load Forecasting Model Based on CEEMD[J]. Power System Technology, 2022, 46(9): 3615-3622. DOI: 10.13335/j.1000-3673.pst.2021.2583

基于补充集合经验模态分解的短期负荷预测模型

A Short-term Load Forecasting Model Based on CEEMD

  • 摘要: 电力负荷预测关乎电量调配和系统运行。针对短期负荷预测,采用补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)算法,结合传统算法和机器学习算法的优势,提出了一种组合预测模型。模型先将原始数据通过奇异值分解(singular value decomposition,SVD)算法进行降噪,再对所得数据进行CEEMD,可得到频率各异的本征模态函数(intrinsic mode functions,IMF)和剩余分量(residual component,RES)。采用独立成分分析(independent component analysis,ICA)提取高频IMF1的独立成分,其余的本征模态函数进行重构得到IMFcg,分别运用不同的方法对IMF1、IMFcg、RES进行预测,最后将IMF1、IMFcg、RES的预测值相加作为真正的预测值。根据实验数据可得,所提模型能充分利用、发掘负荷数据的内在特征,预测效果更佳,可作为负荷预测的参考。

     

    Abstract: Electric load forecasting is concerned with power deployment and system operation. For the short-term load forecasting, this paper proposes a combined forecasting model based on the complementary ensemble empirical mode decomposition (CEEMD), which integrates the advantages of the classical and machine learning approaches. Firstly, the original data are denoised by the singular value decomposition (SVD), and the CEEMD is performed on the noise reduced sequence to obtain the intrinsic mode functions (IMFs) and the trend components (RES) of different frequencies. The independent component analysis (ICA) is adopted on the high frequency IMF1, and the remaining intrinsic mode functions are reconstructed to obtain the IMFcg. Different methods are applied to predict the IMF1, IMFcg, and RES respectively, and the predicted values of the IMF1, IMFcg, and RES are summed up as the final predicted value. According to the experimental data, the proposed method is proved to achieve better prediction by making full use of the intrinsic characteristics of the explored load data, a good reference for the short-term load forecasting.

     

/

返回文章
返回