杨秀, 蒋家富, 刘方, 田英杰, 李凡, 吴裔. 基于注意力机制和卷积神经网络的配电网拓扑辨识[J]. 电网技术, 2022, 46(5): 1672-1682. DOI: 10.13335/j.1000-3673.pst.2021.2538
引用本文: 杨秀, 蒋家富, 刘方, 田英杰, 李凡, 吴裔. 基于注意力机制和卷积神经网络的配电网拓扑辨识[J]. 电网技术, 2022, 46(5): 1672-1682. DOI: 10.13335/j.1000-3673.pst.2021.2538
YANG Xiu, JIANG Jiafu, LIU Fang, TIAN Yingjie, LI Fan, WU Yi. Distribution Network Topology Identification Based on Attention Mechanism and Convolutional Neural Network[J]. Power System Technology, 2022, 46(5): 1672-1682. DOI: 10.13335/j.1000-3673.pst.2021.2538
Citation: YANG Xiu, JIANG Jiafu, LIU Fang, TIAN Yingjie, LI Fan, WU Yi. Distribution Network Topology Identification Based on Attention Mechanism and Convolutional Neural Network[J]. Power System Technology, 2022, 46(5): 1672-1682. DOI: 10.13335/j.1000-3673.pst.2021.2538

基于注意力机制和卷积神经网络的配电网拓扑辨识

Distribution Network Topology Identification Based on Attention Mechanism and Convolutional Neural Network

  • 摘要: 针对当前配电网拓扑变化频繁,拓扑结构实时获取困难等问题,文章提出基于注意力机制和卷积神经网络的配电网拓扑辨识方法。首先利用卷积神经网络挖掘量测信息和配电网拓扑结构之间的关系,学习其映射规则;考虑当前配网中同步相量测量装置(phasor measurement unit,PMU)和微型同步相量测量装置(mico phasor measurement unit,μPMU)等高级量测设备安装数量不足导致获取量测数据质量不高的问题,在卷积神经网络隐藏层中融入注意力机制,以增强模型鲁棒性;通过随机森林算法对特征数据集进行降维,降低模型时、空复杂度;最后,分别基于IEEE 33节点配电网和PG & E69节点配电网开展算例分析,以验证方法的可行性和优越性,并检验利用更少特征进行拓扑辨识的可能性。结果表明:所提方法具有良好优越性和鲁棒性,泛化能力强,在仅提供少量时间断面量测数据情况下便可实现配电网拓扑辨识,且对于辐射网和含环网络同样适用。

     

    Abstract: In view of the frequent changes of distribution network topology and the difficulty of obtaining the topology structure in real time, a distribution network topology identification method based on attention mechanism and convolutional neural network(ACNN) is proposed. The convolution neural network(CNN) is used to mine the relationship between measurement information and distribution network topology, and learn its mapping rules; Considering the problem of insufficient number of advanced measurement devices such as phasor measurement unit(PMU) and mico phasor measurement unit(μPMU) installed in the current distribution network, the attention mechanism is integrated into the hidden layer of convolutional neural network to enhance the robustness of the model; The dimension of feature data set is reduced by random forest algorithm to reduce the time and space complexity of the model; Finally, numerical examples are carried out based on ieee33 node distribution network and PG & E69 node distribution network to verify the feasibility and superiority of the method, and to test the possibility of topology identification using fewer features. The results show that the proposed method has good superiority, robustness and strong generalization ability, Distribution network topology identification can be realized when only a small amount of time section measurement data is provided, and it is also applicable to radial network and ring network.

     

/

返回文章
返回