马速良, 武亦文, 李建林, 周琦, 李雅欣. 聚类分析架构下基于遗传算法的电池异常数据检测方法[J]. 电网技术, 2023, 47(2): 859-867. DOI: 10.13335/j.1000-3673.pst.2021.1871
引用本文: 马速良, 武亦文, 李建林, 周琦, 李雅欣. 聚类分析架构下基于遗传算法的电池异常数据检测方法[J]. 电网技术, 2023, 47(2): 859-867. DOI: 10.13335/j.1000-3673.pst.2021.1871
MA Suliang, WU Yiwen, LI Jianlin, ZHOU Qi, LI Yaxin. Anomaly Detection for Battery Data Based on Genetic Algorithm Under Cluster Analysis Framework[J]. Power System Technology, 2023, 47(2): 859-867. DOI: 10.13335/j.1000-3673.pst.2021.1871
Citation: MA Suliang, WU Yiwen, LI Jianlin, ZHOU Qi, LI Yaxin. Anomaly Detection for Battery Data Based on Genetic Algorithm Under Cluster Analysis Framework[J]. Power System Technology, 2023, 47(2): 859-867. DOI: 10.13335/j.1000-3673.pst.2021.1871

聚类分析架构下基于遗传算法的电池异常数据检测方法

Anomaly Detection for Battery Data Based on Genetic Algorithm Under Cluster Analysis Framework

  • 摘要: 异常检测技术对电池数据特征挖掘、退役电池梯次利用筛选分组以及电池运行状态安全评估均具有重要的工程实际意义。为此,该文提出一种基于聚类分析架构的遗传优化异常检测新方法,其特点在于以聚类分析进行异常检测为核心,群智能优化算法被用于解决全局寻优能力的有效途径,通过有针对性地设计目标函数用于描述数据异常状态,实现了对异常数据的有效检测。最后以电池数据异常状态检测为例,通过对比已有方法和该文所提3种聚类思想下异常检测的结果,验证了所提方法在异常检测个性化、灵活性以及准确度的优越性,尤其是基于密度思想的聚类优化检测过程表现出更为优异的检测效果,为实时电池异常状态检测和数据清洗提供了新思路。

     

    Abstract: Anomaly detection technology has an important engineering practical significance for battery data feature mining, retired battery cascade utilization screening grouping and battery operation state safety evaluation. Therefore, this paper proposes a new method of genetic optimization anomaly detection based on the cluster analysis frame. In this method, the cluster analysis is focused on as a center for anomaly detection and the swarm intelligence optimization algorithm is applied as an effective way to solve the global optimization problem. By reasonably designing objective functions to describe data anomaly, the effective detection of abnormal data is realized. Finally, taking the abnormal state detection of the battery data as an example, by comparing the existing methods and the abnormal detection results under the three clustering ideas proposed in this paper, the advantages of the proposed method in its personality, flexibility and accuracy of abnormal detection are verified, especially showing a better detection effect in the clustering optimization detection process based on density idea, It provides a new idea for real-time battery abnormal state detection and data cleaning.

     

/

返回文章
返回