陈俊, 彭勇刚, 凌家源, 蔡田田, 邓清唐. 基于概率稀疏自注意力模型的非侵入式负荷分解[J]. 电网技术, 2022, 46(10): 3932-3939. DOI: 10.13335/j.1000-3673.pst.2021.1713
引用本文: 陈俊, 彭勇刚, 凌家源, 蔡田田, 邓清唐. 基于概率稀疏自注意力模型的非侵入式负荷分解[J]. 电网技术, 2022, 46(10): 3932-3939. DOI: 10.13335/j.1000-3673.pst.2021.1713
CHEN Jun, PENG Yonggang, LING Jiayuan, CAI Tiantian, DENG Qingtang. Non-intrusive Load Disaggregation Based on Probabilistic Sparse Self-attention Model[J]. Power System Technology, 2022, 46(10): 3932-3939. DOI: 10.13335/j.1000-3673.pst.2021.1713
Citation: CHEN Jun, PENG Yonggang, LING Jiayuan, CAI Tiantian, DENG Qingtang. Non-intrusive Load Disaggregation Based on Probabilistic Sparse Self-attention Model[J]. Power System Technology, 2022, 46(10): 3932-3939. DOI: 10.13335/j.1000-3673.pst.2021.1713

基于概率稀疏自注意力模型的非侵入式负荷分解

Non-intrusive Load Disaggregation Based on Probabilistic Sparse Self-attention Model

  • 摘要: 非侵入式负荷分解能将聚合能量分解为设备级的能源消耗,在能源管理、设备故障检测等领域具有重要意义。面向低频数据,提出了一种基于深度学习的非侵入式负荷分解方法。该方法利用自然语言处理领域的多头概率稀疏自注意力模型搭建核心分解网络,以一维的总功率序列作为输入,使用卷积和池化进行特征的提取,结合位置编码增强序列中数据之间的内在联系,再用核心分解网络进行特征处理;然后经过转置卷积和全连接进行特征映射,产生一维的单个电器功率,从而实现负荷的分解。最后使用英国家用电器级电力数据集(UK domestic appliance-level electricity,UK-Dale)对模型进行训练和验证,并与现有的3种基准负荷分解方法进行对比。结果表明,所提分解方法的分解性能有明显进步。

     

    Abstract: Non-intrusive load disaggregation (NILD) is able to decompose the aggregated energy into the equipment-level energy consumption, which is of great significance in the energy management, equipment fault detection and other fields. This paper proposes a NILD method based on deep learning for the low-frequency data. The method uses the multi-head probability sparse self-attention model in the natural language processing field to build a core disaggregation network. Taking the one-dimensional total power sequence as an input, it uses the convolution and pooling to extract the features. Combining with the positional encoding, it enhances the internal relationship between data in the sequence. By using the core disaggregation network the features are processed. By transposing the convolution and the full connection the features are mapped to generate the one-dimensional single electrical power. Finally, this paper uses the domestic appliance-level electricity (UK-Dale) to train and verify the model, and compares it with the existing three benchmark load disaggregation methods. The results show that the disaggregation performance of the proposed method has improved significantly.

     

/

返回文章
返回