周润, 向月, 王杨, 夏世威, 刘友波, 刘俊勇. 基于智能电表集总数据的家庭电动汽车充电行为非侵入式辨识与负荷预测[J]. 电网技术, 2022, 46(5): 1897-1906. DOI: 10.13335/j.1000-3673.pst.2021.1677
引用本文: 周润, 向月, 王杨, 夏世威, 刘友波, 刘俊勇. 基于智能电表集总数据的家庭电动汽车充电行为非侵入式辨识与负荷预测[J]. 电网技术, 2022, 46(5): 1897-1906. DOI: 10.13335/j.1000-3673.pst.2021.1677
ZHOU Run, XIANG Yue, WANG Yang, XIA Shiwei, LIU Youbo, LIU Junyong. Non-intrusive Identification and Load Forecasting of Household Electric Vehicle Charging Behavior Based on Smart Meter Data[J]. Power System Technology, 2022, 46(5): 1897-1906. DOI: 10.13335/j.1000-3673.pst.2021.1677
Citation: ZHOU Run, XIANG Yue, WANG Yang, XIA Shiwei, LIU Youbo, LIU Junyong. Non-intrusive Identification and Load Forecasting of Household Electric Vehicle Charging Behavior Based on Smart Meter Data[J]. Power System Technology, 2022, 46(5): 1897-1906. DOI: 10.13335/j.1000-3673.pst.2021.1677

基于智能电表集总数据的家庭电动汽车充电行为非侵入式辨识与负荷预测

Non-intrusive Identification and Load Forecasting of Household Electric Vehicle Charging Behavior Based on Smart Meter Data

  • 摘要: 未来规模化电动汽车的发展趋势适应当前国家“新基建”的号召,且为缓解化石能源危机以及环境问题提供了新的契机。然而,大量电动汽车充电具有随机性及不确定性等特点,是保证电网安全稳定运行所面临的巨大挑战。其中家庭用户的充电无序性更强,因此,对家庭充电负荷进行实时监测与提取,制定相应的需求响应策略或能效管理模式对其充电行为加以引导具有重要意义。为此,该文提出了一种利用电动汽车充电负荷低频特性的非侵入式充电负荷提取方法。首先,采用两阶段分解技术提取智能电表低频分量,在此基础上,利用事件监测和动态时间翘曲(dynamic time warping,DTW)方法来估计最接近的充电时间和振幅。然后,以分解得到的电动汽车充电负荷和集总智能电表功率为输入,采用CNN-Attention-LSTM神经网络算法进行训练,预测家庭用户短期内的电动汽车充电情况。并通过多个算例验证了算法的有效性。

     

    Abstract: The development trend of large-scale electric vehicles (EVs) in the future adapts to the current national call for "New infrastructure", and provides new opportunities for alleviating the crisis of fossil energy and environmental problems. However, the charging randomness and uncertainty of a large number of EVs have brought new challenges to the safe and stable operation of the power grid. The charging disorder of household users is stronger. It is of great significance to monitor and extract the real-time household charging loads, formulate corresponding demand response strategy or energy efficiency management and guide their charging behaviors. Therefore, this paper proposes a non-intrusive charging load extraction method using the low-frequency characteristics of electric vehicle charging loads. Firstly, the low frequency components of smart meters are extracted by the two-stage decomposition technique. On this basis, the event monitoring and dynamic time warping (DTW) are used to estimate the charging intervals and amplitudes. Then, taking the decomposed electric vehicle charging loads and the aggregated smart meter data as the inputs, the CNN-Attention-LSTM neural network algorithm is used for the data training in order to forecast the short-term charging of electric vehicles for the household users. The effectiveness of the algorithm is verified on numerical cases.

     

/

返回文章
返回