孙玉芹, 王松雷, 黄冬梅, 孙园, 胡安铎, 孙锦中. 考虑簇间重叠关系的负荷曲线多重聚类集成算法[J]. 电网技术, 2022, 46(5): 1982-1989. DOI: 10.13335/j.1000-3673.pst.2021.1016
引用本文: 孙玉芹, 王松雷, 黄冬梅, 孙园, 胡安铎, 孙锦中. 考虑簇间重叠关系的负荷曲线多重聚类集成算法[J]. 电网技术, 2022, 46(5): 1982-1989. DOI: 10.13335/j.1000-3673.pst.2021.1016
SUN Yuqin, WANG Songlei, HUANG Dongmei, SUN Yuan, HU Anduo, SUN Jinzhong. Multiple Clustering Integration Algorithm for Load Curves Considering Overlapping Relationships Between Clusters[J]. Power System Technology, 2022, 46(5): 1982-1989. DOI: 10.13335/j.1000-3673.pst.2021.1016
Citation: SUN Yuqin, WANG Songlei, HUANG Dongmei, SUN Yuan, HU Anduo, SUN Jinzhong. Multiple Clustering Integration Algorithm for Load Curves Considering Overlapping Relationships Between Clusters[J]. Power System Technology, 2022, 46(5): 1982-1989. DOI: 10.13335/j.1000-3673.pst.2021.1016

考虑簇间重叠关系的负荷曲线多重聚类集成算法

Multiple Clustering Integration Algorithm for Load Curves Considering Overlapping Relationships Between Clusters

  • 摘要: 负荷聚类用于对负荷种类进行划分,从而制定节能策略,有助于实现“碳达峰、碳中和”。基于现有算法的不足,该文提出一种考虑簇间重叠关系的负荷曲线多重聚类集成算法。首先利用人工定义的层次聚类划分中心构造标签可信空间,以评判层次聚类算法的标签可信度,进而形成多重可信簇;其次基于潜在簇和潜在聚类中心的概念,利用同时考虑负荷曲线数值和形态特性的相似度度量函数构建可信簇的簇间相似矩阵,最后使用谱聚类作为最终集成手段完成标签的对齐,得到最终聚类结果。该文算法与层次聚类和谱聚类算法的结果对比表明,该文在轮廓系数S,戴维森堡丁指标D和Calinski-Harabaz指标H上均有较好表现,且拥有更为合理的曲线聚类图像,从而验证了算法的有效性。

     

    Abstract: Load clustering is an important part of the strategy to achieve "peak carbon dioxide emissions" and "carbon neutrality". Based on the shortcomings of the existing algorithms, this paper proposes an integrated algorithm for multiple clustering of load profiles considering the overlapping relationships between clusters. The label trust space is constructed by using the manually defined hierarchical clustering division center to evaluate the label trust of the hierarchical clustering algorithm and form multiple trusted clusters at first. Secondly, based on the concepts of the potential clusters and the potential clustering centers, the inter-cluster similarity matrix of the credible clusters is constructed by using the similarity measure function that considers both the numerical and morphological characteristics of the load curves. Finally, the alignment of the labels is completed and the final clustering results are obtained by using spectral clustering as the final integration means. The comparisons of the results in this paper with those of the hierarchical clustering and with the spectral clustering algorithms show that the proposed integrated algorithm in this paper has a better performance in SC coefficients, DBI metrics and CH metrics, and that it has more reasonable curve clustering images, thus the effectiveness of the algorithm is verified.

     

/

返回文章
返回